精英家教网 > 高中数学 > 题目详情
已知A、B、C三点的坐标分别为(1,1)、(3,2)、(2,k+1),若△ABC为等腰三角形,求k的值.
分析:根据三点坐标,分别求出两点的距离,然后根据△ABC为等腰三角形,建立条件关系即可得到结论.
解答:解:∵A(1,1)、B(3,2)、C(2,k+1),
∴|AB|=
5
,|AC|=
1+k2
,|BC|=
1+(k-1)2

∵△ABC为等腰三角形,
∴若|AB|=|AC|,则
5
=
1+k2
,解得k=±2.
若|AB|=|BC|,则
5
=
1+(k-1)2
,解得k=-1或3,
若|BC|=|AC|,则
1+k2
=
1+(k-1)2
,解得k=
1
2

综上:k=±2或k=-1或3或
1
2
点评:本题主要考查两点间的距离公式的应用,注意要对三角形的边长关系进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
2
)
,若
AC
BC
=-1
,则
1+tanα
2sin2α+sin2α
的值为(  )
A、-
5
9
B、-
9
5
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点的坐标分别为A(3,0)、B(3,0)、C(cosα,sinα)且
AC
BC
=-
1
2
.求:
(Ⅰ)sinα+cosα的值;
(Ⅱ)
sin(π-4α)•cos2(π-α)
1+sin(
π
2
+4α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别为A(0,1),B(2,2),C(3,5),则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(0,
3
2
)
,B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)当0≤x≤
π
2
时,求函数f(x)=2sin(2x+θ)的最大值和最小值.

查看答案和解析>>

同步练习册答案