精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的顶点A的坐标为(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.

(Ⅰ)求顶点C的坐标;

(Ⅱ)求直线AB的方程.

【答案】(Ⅰ)(4,3); (Ⅱ)2x-3y-7=0.

【解析】

Ⅰ)通过AC边上的高线方程得AC的斜率,由点斜式得AC的方程,AC的方程与CM的方程联立得点C的坐标;

Ⅱ)设出点B的坐标,根据中点关系,得M的坐标代入CM的方程,B点坐标代入BH方程,两个方程联立可解得B的坐标,再由两点式得AB的方程.

(Ⅰ)∵AC边上的高BH所在直线方程为x-2y-5=0,

∴直线AC的斜率k=-2,

∴直线AC的方程为y-1=-2(x-5),即:2x+y-11=0,

∵直线AC与CM相交于点C,

∴由解得:

∴点C的坐标为(4,3);

(Ⅱ)设B(x1,y1),∵M是AB中点,且A(5,1),

∴点M的坐标为

代入CM所在直线方程2x-y-5=0并化简得:2x1-y1-1=0,

又∵点B(x1,y1)在直线BH上,∴x1-2y1-5=0.

∴由解得:

∴点B的坐标为(-1,-3)

∴直线AB的方程为,即:2x-3y-7=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.

x

﹣1

0

4

5

f(x)

1

2

2

1

下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)﹣a有4个零点.
其中所有真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:

第一次月考物理成绩

第二次月考物理成绩

第三次月考物理成绩

学生甲

80

85

90

学生乙

81

83

85

学生丙

90

86

82

则下列结论正确的是(  )

A. 甲,乙,丙第三次月考物理成绩的平均数为86

B. 在这三次月考物理成绩中,甲的成绩平均分最高

C. 在这三次月考物理成绩中,乙的成绩最稳定

D. 在这三次月考物理成绩中,丙的成绩方差最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知l1 , l2 , l3 , …ln为平面内相邻两直线距离为1的一组平行线,点O到l1的距离为2,A,B是l1的上的不同两点,点P1 , P2 , P3 , …Pn分别在直线l1 , l2 , l3 , …ln上.若 =xn +yn (n∈N*),则x1+x2+…+x5+y1+y2+…+y5的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

【答案】(1);(2)905万;(3)6月

【解析】试题(1)根据平均数和最小二乘法的公式,求解,求出,即可求解回归方程;(2)把分别代入,回归直线方程,即可求解;(3)令,即可求解的值,得出结果.

试题解析:(1

故利润关于月份的线性回归方程.

2)当时,,故可预测月的利润为.

时,, 故可预测月的利润为.

3)由,故公司2016年从月份开始利润超过.

考点:1、线性回归方程;2、平均数.

型】解答
束】
21

【题目】已知定义在上的函数),并且它在上的最大值为

(1)求的值;

(2)令,判断函数的奇偶性,并求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,依次连接椭圆的四个顶点得到的菱形面积为4.

(1)求椭圆的方程;

(2)过点且斜率为的直线交椭圆 两点,设面积之比为(其中为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 内部取n 个点, 将△ABC剖分为若干个小三角形(每两个小三角形或者有一个公共顶点,或者有一条公共边,或者完全没有公共点,如图所示).现将点A 染红色, 点B 染蓝色,点C 染黑色,其余n 个点的每个点也任意染上红、蓝、黑三色之一.我们称三个顶点的颜色恰为红、蓝、黑的小三角形为“特征三角形”.证明:至少有一个小三角形是特征三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)上一点与它的左、右两个焦点F1 , F2的距离之和为2 ,且它的离心率与双曲线x2﹣y2=2的离心率互为倒数.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于点B,AO的延长线与椭圆交于点C.
①当直线AB的斜率存在时,求证:直线AB与BC的斜率之积为定值;
②求△ABC面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是偶函数,若在(0,+∞)为增函数,f(1)=0,则<0的解集为(  )

A. ( B.

C. D.

查看答案和解析>>

同步练习册答案