精英家教网 > 高中数学 > 题目详情

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

有明显拖延症

无明显拖延症

合计

35

25

60

30

10

40

合计

65

35

100

(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

【答案】(Ⅰ)

的分布列为:

0

1

2

;

(Ⅱ)

【解析】试题分析:(Ⅰ)分层从 “无有明显拖延症”里抽人.无明显拖延症的问卷的份数为,随机变量X=0,1,2.利用“超几何分布”即可得出分布列及其数学期望;
(Ⅱ)根据“独立性检验的基本思想的应用”计算公式可得的观测值,即可得出.

试题解析:(Ⅰ)女生中从“有明显拖延症”里抽人,“无有明显拖延症”里抽人.

则随机变量

的分布列为:

0

1

2

(Ⅱ)由题设条件得

由临界值表可知: ,∴

点晴:本题考查的是超几何分布和独立性检验问题.(Ⅰ)要注意区分是超几何分布还是二项分布,分层从 “无有明显拖延症”里抽人.无明显拖延症的问卷的份数为 =0,1,2.利用“超几何分布”即可得出分布列及其数学期望;(Ⅱ)根据“独立性检验的基本思想的应用”计算公式可得的观测值,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为( ,0),求θ的最小值.
(3)对任意的x∈[ ]时,方程f(x)=m有两个不等根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中点.
(Ⅰ)在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明l⊥CE;
(Ⅱ)设(Ⅰ)中所作直线l与CE确定的平面为α,求点C1到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的任意,当时,总有,则称函数为单调函数,例如函数是单纯函数,但函数不是单纯函数,下列命题:

①函数是单纯函数;

②当时,函数是单纯函数;

③若函数为其定义域内的单纯函数, ,则

④若函数是单纯函数且在其定义域内可导,则在其定义域内一定存在使其导数,其中正确的命题为__________.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=x2﹣2,f(x)= ,则f(x)的值域是(
A.
B.[0,+∞)??
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|log2 ≤1},B={x|x2﹣2x+1﹣k2≥0}.
(1)求集合A;
(2)若A∩B≠,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.
(1)求证:BM⊥平面ADM;
(2)求直线AE与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(I)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x﹣y|≤5的事件概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.

求证:(1)EF平面ABC;

(2)ADAC.

查看答案和解析>>

同步练习册答案