设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围
a∈(–3,1
解法一:由f(x)>a,在[–1,+∞)上恒成立
x2–2ax+2–a>0在[–1,+∞)上恒成立.
考查函数g(x)=x2–2ax+2–a的图像在[–1,+∞]时位于x轴上方. 如图两种情况:
不等式的成立条件是:
(1)Δ=4a2–4(2–a)<0a∈(–2,1)
(2)a∈(–3,–2,
综上所述a∈(–3,1).
解法二:由f(x)>ax2+2>a(2x+1)
令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图像.
如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:专项题 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com