精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.
(1)当b=0时,f(x)=ax2-4x
若a=0,则f(x)=-4x符合条件,
若a≠0,则
a>0
4
2a
≥2
∴0<a≤1,a的取值范围0≤a≤1
(2)a=0时,f(x)无最大值∴a≠0必有
a<0
4+2a-b2≥0
a<0
1-
5
≤b≤1+
5
于是x0=a=
4+2b-b2
a
,则a2=
5-(b-1)2

∴a=-1,b=-1或3
因此符合条件的整数对为(-1,-1)和(-1,3).
(3)对于(2)的整数对(a,b),f(x)=-x2-2x,(7)当x∈[0,k]时,h(x)=-h(-x)=-f(-x)=x2-2x
∴h(x)=
-x2-2x,-k≤x≤0
x2-2x,0<x≤k
,由x2-2x=x,得x=3,由-x2-2x=x,得x=-3.
由图象可知,x∈[-1,1]时,h(x)∈[-1,1]
x∈[-3,3]时,h(x)∈[-3,3]
∴k=1或k=3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的个数是(  )
①函数y=x(1-2x)(x>0)有最大值
1
8

②函数y=2-3x-
4
x
(x<0)有最大值2-4
3

③若a>0,则(1+a)(1+
1
a
)≥4
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求函数y=loga(x-x2)(a>0,a≠1)的定义域、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x+1,g(x)=x2-2x+1
(1)设集合A={x|g(x)=9},求集合A;
(2)若x∈[-2,5],求g(x)的值域;
(3)画出y=
f(x),x≤0
g(x),x>0
的图象,写出其单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在区间(-∞,0)上是增函数的是(  )
A.y=x2-4x+8B.y=丨x-1丨C.y=-
2
x-1
D.y=
1-x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-m|+2x-3(m∈R).
(1)若m=4,求函数y=f(x)在区间[1,5]的值域;
(2)若函数y=f(x)在R上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)在(-∞,+∞)上是减函数,且a+b≤0,则下列各式成立的是(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0
C.f(a)+f(b)≤f(-a)+f(-b)D.f(a)+f(b)≥f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某上市股票在30天内每股的交易价格p元与时间t(天)(0<t≤30且t∈N)组成有序数对(t,p),点(t,p)落在下面中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.
第七天4101622
Q(万股)36302418
(1)根据提供的图象,写出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
(
1
2
)x,x<0
x+1,x≥0
,则f[f(-2)]=(  )
A.
1
2
B.
5
4
C.-3D.5

查看答案和解析>>

同步练习册答案