【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户
求抽取的6名用户中,男女用户各多少人;
② 从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | |||
女 | |||
合计 |
【答案】(1)① 男2人,女4人;(2);(3)见解析
【解析】
(1) ①利用分层抽样求出抽取的6名用户中,男女用户各多少人. ②利用对立事件的概率和古典概型求既有男“移动支付达人”又有女“移动支付达人”的概率. (2)先完成列联表,再求的值,再判断能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关.
(1)① 男人:2人,女人:6-2=4人;
②既有男“移动支付达人”又有女“移动支付达人”的概率 .
(2)由表格数据可得列联表如下:
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合计 | 40 | 60 | 100 |
将列联表中的数据代入公式计算得:
,
所以在犯错误概率不超过0.01的前提下,能认为“移动支付活跃用户”与性别有关.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an= ,若从{an}中提取一个公比为q的等比数列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 则满足条件的最小q的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是⊙O的切线,ADE是⊙O的割线,AC=AB,连接CD,CE,分别与⊙O交于点F,点G.
(1)求证:△ADC~△ACE;
(2)求证:FG∥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于点(1,0)对称,若对任意的x,y∈R,等式f(y﹣3)+f( )=0恒成立,则 的取值范围是( )
A.[2﹣ ,2+ ]
B.[1,2+ ]
C.[2﹣ ,3]
D.[1,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在坐标原点的圆O经过圆与圆的交点,A、B是圆O与y轴的交点,P为直线y=4上的动点,PA、PB与圆O的另一个交点分别为M、N.
(1)求圆O的方程;
(2)求证:直线MN过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m,n的值,使
(1)l1与l2相交于点P(m,-1);则m=____,n=_______
(2)l1∥l2.则_________________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com