精英家教网 > 高中数学 > 题目详情
5.设函数y=f(x),x∈R“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

分析 根据函数奇偶性与函数图象之间的关系,结合充分条件和必要条件的定义进行判断.

解答 解:若y=|f(x)|是偶函数,则不能推出y=f(x)的图象关于原点对称,即充分性不成立,
反之若y=f(x)的图象关于原点对称,则函数f(x)是奇函数,则f(-x)=-f(x),
则|f(-x)|=|-f(x)|=|f(x)|,
则y=|f(x)|是偶函数是偶函数,即必要性成立,
则“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的必要不充分条件,
故选:C

点评 本题主要考查充分条件和必要条件的判断,结合函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知$sin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{4}\;,\;\;θ∈({-\frac{π}{2}\;,\;\;0})$,则sinθcosθ=-$\frac{3}{8}$,cosθ-sinθ=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆$\frac{x^2}{4}+{y^2}=1$的两个焦点为F1,F2,M是椭圆上任一动点,则$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$g(x)=alnx+\frac{1}{2}{x^2}+({1-b})x$.
(1)若g(x)在点(1,g(1))处的切线方程为8x-2y-3=0,求a,b的值;
(2)若b=a+1,x1,x2是函数g(x)的两个极值点,试比较-4与g(x1)+g(x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别是a,b,c,已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,则△ABC的面积为(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表):
零件数x(个)1020304050
加工时间y(分钟)6268758189
由最小二乘法求得回归方程 $\widehat{y}$=0.67x+a,则a的值为54.9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$∠A=\frac{π}{3},BC=4\sqrt{3}$,则△ABC的周长为(  )
A.$4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$B.$4\sqrt{3}+8sin(B+\frac{π}{3})$C.$4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$D.$4\sqrt{3}+8cos(B+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足a4-a2=4,a3=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足${b_n}={(\sqrt{2})^{a_n}}$,求数列{bn}的前8项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$sin(α+\frac{π}{6})=\frac{1}{3}$,则$cos(2α-\frac{2π}{3})$的值是(  )
A.$\frac{5}{9}$B.$-\frac{8}{9}$C.$-\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

同步练习册答案