精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C: =1(a>b>0)的焦点F1 , F2 , 过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2 倍.
(Ⅰ)求C的离心率;
(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得 ?若存在,求出点M的坐标;若不存在,说明理由.

【答案】解:(Ⅰ)∵椭圆C: =1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,

△PQF1的周长为短轴长的2 倍,△PQF1的周长为4a

∴依题意知 ,即

∴C的离心率

(Ⅱ)设椭圆方程为 ,直线的方程为y=x﹣c,

代入椭圆方程得

设P(x1,y1),Q(x2,y2),则

设M(x0,y0),则

代入①得

因为

所以

从而②式不成立.

故不存在点M,使 成立


【解析】(Ⅰ)由椭圆的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2 倍,得到 ,由此能求出椭圆C的离心率.(Ⅱ)设椭圆方程为 ,直线的方程为y=x﹣c,代入椭圆方程得 ,由此利用韦达定理、椭圆性质、向量知识,结合已知条件能求出不存在点M,使 成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax(其中a∈R).
(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范围;
(Ⅲ)设g(x)=f(x)+ x2 , 且函数g(x)有极大值点x0 , 求证:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣bx+2(a>0)
(1)在x=1时有极值0,试求函数f(x)的解析式;
(2)求f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,面ABB1A1为矩形,AB=1,AA1= ,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A﹣BC﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线x2 =1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列两个命题: 命题p::若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为 .命题q:设 是两个非零向量,则“ =| |”是“ 共线”的充分不必要条件,那么,下列命题中为真命题的是(
A.p∧q
B.¬p
C.p∧(¬q)
D.(¬p)∨(q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前项和为Sn , 且 ,用[x]表示不超过x的最大整数,如[﹣0.1]=﹣1,[1.6]=1,设bn=[an],则数列{bn}的前2n项和b1+b2+b3+b4++b2n1+b2n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出x的值是(
A.2016
B.1024
C.
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A是双曲线 =1(a>0,b>0)的左顶点,F1 , F2分别为左、右焦点,P为双曲线上一点,G是△F1PF2的重心,若 ,| |= ,| |+| |=8,则双曲线的标准方程为(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

查看答案和解析>>

同步练习册答案