精英家教网 > 高中数学 > 题目详情

【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ4cosθ,直线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程和直线C2的普通方程;

2)若P10),直线C2与曲线C1相交于AB两点,求|PA||PB|的值.

【答案】(1)曲线C1x2+y24x0;直线C2xsinαycosαsinα0(2)3

【解析】

1)求曲线C1的直角坐标方程需利用直角坐标与极坐标关系互化关系式xρcosθyρsinθx2+y2ρ2,将ρ4cosθ,等式两边乘ρρ24ρcosθ代入即可,直线C2的参数方程消去参数t即为普通方程;

2)因为P10)在直线C2上,将直线C2的参数方程t为参数)代入曲线C1x2+y24x0,设AB对应的参数分别为t1t2,根据根与系数关系可得则t1t2=﹣3,故可求|PA||PB||t1t2|3.

1)曲线C1的极坐标方程为ρ4cosθ,由xρcosθyρsinθx2+y2ρ2

可得ρ24ρcosθ,即为x2+y24x0

直线C2的参数方程为t为参数),

可得xsinαycosαsinα0

2)因为P10)在直线C2上,

将直线C2的参数方程t为参数)代入x2+y24x0

可得(1+tcosα2+tsinα241+tcosα)=0

化为t22tcosα30

AB对应的参数分别为t1t2,则t1t2=﹣3

可得|PA||PB||t1t2|3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…….其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000.

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

超过25000元至35000元的部分

税率(%

3

10

20

25

1)现有李某月收入19600元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?

2)现收集了某城市50名年龄在40岁到50岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有40人,没有孩子的有10人,有一个孩子的人中有30人需要赡养老人,没有孩子的人中有5人需要赡养老人,并且他们均不符合其它专项扣除(受统计的50人中,任何两人均不在一个家庭).若他们的月收入均为20000元,试求在新个税政策下这50名公司白领的月平均缴纳个税金额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点的坐标为,直线的参数方程为为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.

(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;

(Ⅱ)直线与圆的交点为,证明:是与无关的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并写出取得最大值时x的集合;

2)将fx)的函数图象向左平移φφ0)个单位后得到的函数gx)是偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果无穷数列{an}满足条件:①;② 存在实数M,使得anM,其中nN*,那么我们称数列{an}Ω数列.

1)设数列{bn}的通项为bn20n2n,且是Ω数列,求M的取值范围;

2)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3S3,证明:数列{Sn}Ω数列;

3)设数列{dn}是各项均为正整数的Ω数列,求证:dndn1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知圆和双曲线,记轴正半轴、轴负半轴的公共点分别为,又记在第一、第四象限的公共点分别为.

1)若,且恰为的左焦点,求的两条渐近线的方程;

2)若,且,求实数的值;

3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在长方体中,,点上的一个动点,平面与棱交于点,给出下列命题:

四棱锥的体积为20

存在唯一的点,使截面四边形的周长取得最小值

点不与重合时,在棱上均存在点,使得平面

存在唯一的点,使得平面,且

其中正确的命题是_____(填写所有正确的序号)

查看答案和解析>>

同步练习册答案