精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式的解集为

(1)求a,b的值.

(2)当时,解关于x的不等式

【答案】(1) (2)见解析

【解析】

试题

(1)利用韦达定理可得

(2)结合(1)的结论分类讨论实数c的范围即可求得不等式的解集.

试题解析:

解:(1)因为不等式ax2-3x+2>0的解集为{x|x<1或x>b}

所以x1=1与x2b是方程ax2-3x+2=0的两个实数根

b>1且a>0

 解得

(2)不等式ax2-(acb)xbc<0,

x2-(2+c)x+2c<0,即(x-2)(xc)<0.

c>2时,不等式(x-2)(xc)<0的解集为{x|2<x<c};

c<2时,不等式(x-2)(xc)<0的解集为{x|c<x<2};

当c=2时,不等式(x-2)(x-c)<0的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,若,则称的“不动点”,若,则称的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为,即,那么,

(1)求函数的“稳定点”;

(2)求证:

(3)若,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,四棱锥的底面为菱形,平面

分别为的中点,

)求证:平面平面

)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有(  )

①函数y的定义域为{x|x1};

②函数yx2x+1(0,+)上是增函数;

③函数f(x)=x3+1(xR),若f(a)=2,则f(-a)=-2;

④已知f(x)R上的增函数,若ab>0,则有f(a)+f(b)>f(-a)+f(-b).

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示

年份2010+x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

(1)请根据上表提供的数据,求出y关于x的线性回归方程;

(2) 据此估计2015年该城市人口总数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案