精英家教网 > 高中数学 > 题目详情
已知椭圆G的中心在坐标原点,离心率为
5
3
,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6.
(1)求椭圆G的方程;
(2)若∠F1NF2=90°,求△NF1F2的面积;
(3)若过点M(-2,1)的直线l与椭圆交于A、B两点,且A、B关于点M对称,求直线l的方程.
分析:(1)设出椭圆的方程,利用椭圆的定义得到2a=6,再利用椭圆的离心率公式列出关于a,c的方程,求出c,利用椭圆中的三个参数的关系求出b,写出椭圆的方程.
(2)利用直角三角形的勾股定理及椭圆的定义得到关于|NF1|,|NF2|的方程,求出|NF1|•|NF2|的值,利用直角三角形的面积公式求出△NF1F2的面积.
(3)设出直线的方程,将直线的方程与椭圆方程联立,消去y得到关于x的二次方程,利用韦达定理得到相交弦的中点横坐标,列出方程求出直线的斜率,得到直线的方程.
解答:解:(1)设椭圆G的方程为:
x2
a2
+
y2
b2
=1
(a>b>0)半焦距为c.
2a=6
c
a
=
5
3

解得
a=3
c=
5

∴b2=a2-c2=9-5=4
所以椭圆G的方程为
x2
9
+
y2
4
=1

(2)若∠F1NF2=90°,
则在Rt△NF1F2中,|NF1|2+|NF2|2=|F1F2|2=20.
又因为|NF1|+|NF2|=6
解得|NF1|•|NF2|=8,
所以S△NF1F2=
1
2
|NF1|•|NF2|=4

(3)设A、B的坐标分别为(x1,y1),(x2,y2),M的坐标为(-2,1),
当k不存在时,A、B关于点M对称显然不可能.
从而可设直线l的方程为y=k(x+2)+1,
代入椭圆G的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0,
△=(36k2+18k)2-4(4+9k2)(36k2+36k-27)=16×9(5k2-4k+3)
=16×45[(k-
2
5
)
2
+
11
25
]>0

因为A,B关于点M对称,
所以
x1+x2
2
=-
18k2+9k
4+9k2
=-2
,解得k=
8
9

所以直线l的方程为y=
8
9
(x+2)+1

即8x-9y+25=0(经检验,符合题意).
点评:求圆锥曲线的方程,一般利用待定系数法;解决直线与圆锥曲线的位置关系问题,一般设出直线方程,将直线方程与圆锥曲线方程联立,消去一个未知数,得到关于一个未知数的二次方程,利用韦达定理,找突破口.注意设直线方程时,一定要讨论直线的斜率是否存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆Ck:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak
(1)求椭圆G的方程
(2)求△AkF1F2的面积
(3)问是否存在圆Ck包围椭圆G?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C:x2+y2+2x-4y-20=0的圆心为点A.
(1)求椭圆G的方程;  
(2)求△AF1F2面积;
(3)求经过点(-3,4)且与圆C相切的直线方程;
(4)椭圆G是否在圆C的内部,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为(  )

查看答案和解析>>

同步练习册答案