精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数,在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

1求圆的普通方程和直线的直角坐标方程;

2设直线轴,轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值.

【答案】1 ,2,.

【解析】

试题分析:1把曲线的参数方程移项,根据同角三角函数的基本关系消去参数即可求得圆的普通方程,利用两角和的余弦公式展开,由即可得到直线的直角坐标方程;2轴负半轴上的点对应的极角为轴正半轴上的点对应的极角为,由此可得两点的极坐标,由直线的参数方程得到点的参数表达式,由点到直线的距离公式及三角恒等变换得到面积的表达式,即可求得最值.

试题解析:1消去参数,得

所以圆的普通方程为.

,得

所以直线的直角坐标方程为.

2直线轴,轴的交点为,化为极坐标为

点的坐标为,则点到直线的距离为

,又

所以面积的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,DA⊥平面ABEAEEBBC=2,

BF⊥平面ACE,且点FCE上.

(1)求证:AEBE

(2)求三棱锥DAEC的体积;

(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N

使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为原点的直角坐标系中,点的直角顶点,已知,且点的纵坐标大于0.

(1)的坐标

(2)求圆关于直线对称的圆的方程;在直线上是否存在点,过点的任意一条直线如果和圆都相交,则该直线被两圆截得的线段长相等,如果存在求出点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数

1)比较的大小,并说明理由.(提示:

2)若,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线互相平行,求的值;

2)求的单调区间;

3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,左、右顶点分别为,是椭圆上一点, 记直线的斜率为,且有.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点, 为直径的圆经过原点, 且线段的垂直平分线在轴上的截距为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子弹打光则停止射击,设射击次数为,的分布列及.( 结果用分数表示)

查看答案和解析>>

同步练习册答案