精英家教网 > 高中数学 > 题目详情

【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:

转速x(/)

16

14

12

8

每小时生产有缺点的零件数y()

11

9

8

5

(1)利用散点图或相关系数r的大小判断变量yx是否线性相关?为什么?

(2)如果yx有线性相关关系,求回归直线方程;

(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?

(最后结果精确到0.001.参考数据:

回归分析有关公式:r=

【答案】(1)yx有线性性相关关系(2)(3)

【解析】

(1)利用所给的数据根据公式求出两个变量的相关系数,得到相关关系数趋势大于,得到两个变量具有线性相关关系;(2)先做出横坐标和纵坐标的平均数,求出利用小二乘法求线性回归方程的系数公式中所需的量,利用公式可得系数的值从而求出进而可得线性回归方程;(3)根据上一问做出的线性回归方程,使得函数值小于或等于解出不等式即可.

1

yx有线性性相关关系.

2)解:

∴回归直线方程为:

3,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解上、下班时期的交通情况,某市抽取了12辆机动车行驶的时速,得到了如下数据(单位:km/h.

上班时期:30 33 18 27 32 40 26 28 21 28 35 20

下班时期:27 19 32 29 36 29 30 22 25 16 17 30

用茎叶图表示这些数据,并分别估计出该市上、下班时期机动车行驶的平均时速.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“绿水青山就是金山银山”。随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭。一段时间内,鸡蛋的价格起伏较大(不同周价格不同)。假设第一周、第二周鸡蛋的价格分别为元、元(单位:kg);甲、乙两人的购买方式不同:甲每周购买3kg鸡蛋,乙每周购买10元钱鸡蛋.

(Ⅰ)若,求甲、乙两周购买鸡蛋的平均价格;

(Ⅱ)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的可导函数,其导函数为,且有,则不等式 的解集为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.

(1)打进的电话在响5声之前被接的概率是多少?

(2)打进的电话响4声而不被接的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆经过伸缩变换后得到曲线,相互垂直的直线过定点与曲线相交于两点, 与曲线相交于两点.

(1)求曲线的直角坐标方程;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,在底面ABCD中,AD//BC,ADCD,QAD的中点,M是棱PC的中点,PA=PD=2,BC=AD=1,CD=,PB=

Ⅰ)求证:平面PAD⊥底面ABCD;

Ⅱ)试求三棱锥B-PQM的体积.

查看答案和解析>>

同步练习册答案