【题目】已知函数.
(1)讨论函数的单调性;
(2)若且,求实数的取值范围.
【答案】(1)见解析;(2).
【解析】
(1)求出函数的定义域和导数,对实数进行分类讨论,分析导数在上的符号变化,进而可得出函数在其定义域上的单调区间;
(2)由题意得不等式对任意的恒成立,构造函数,可得出,利用导数分析函数在区间上的单调性,求得函数的最大值,然后解不等式即可得出实数的取值范围.
(1)函数的定义域是.
.
①当,即时,,此时,函数在上单调递增;
②当,即时,
(i)若,则.
令,得;令,得,
此时,函数在上单调递增,在上单调递减;
(ii)若,则,则,则.
则对任意恒成立,此时,函数在上单调递减.
综上所述,当时,函数在上单调递减;
当时,函数在上单调递增,在上单调递减;
当时,函数在上单调递增;
(2)等价于,即.
令,则.
,
①当时,对任意的恒成立,符合题意;
②当时,令,得或(负根舍去),
令,得;令,得,
所以函数在上单调递增,在上单调递减.
故,
因为,所以,令,则函数单调递增.
又,故由得,得.
综上,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】袋中装有6个球,红蓝两色各半,从袋中不放回取球次,每次取1个球.
(1)求下列事件的概率:
①事件:,取出的球同色;
②事件:,第次恰好将红球全部取出;
(2)若第次恰好取到第一个红球,求抽取次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.
求椭圆的标准方程;
直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C1的参数方程为(t为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.
(1)写出圆C1的极坐标方程,并求圆C1与圆C2的公共弦的长度d;
(2)设射线θ=与圆C1异于极点的交点为A,与圆C2异于极点的交点为B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.
(1)求抛物线的方程;
(2)直线与抛物线交于、两点,若,求点到直线的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为“资深用户”.
(1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为“资深用户”与性别有关;
“资深用户” | 非“资深用户” | 总计 | |
男性 | |||
女性 | |||
总计 |
(2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中“资深用户”的人数为X,求随机变量X的分布列与数学期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列满足:对于任意,均为数列中的项,则称数列为“数列”.
(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;
(2)若公差为的等差数列为“数列”,求的取值范围;
(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A.23B.21C.35D.32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,且,满足条件的点的轨迹为曲线.
(1)求曲线的方程;
(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com