精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,|?|<
π
2
.则下列关于函数f(x)的说法中正确的是(  )
分析:结合图象求得f(x)=sin(x+
π
6
),由此判断A、B、C都不正确;令2kπ+
π
2
≤x+
π
6
≤2kπ+
2
,k∈z,可得函数的单调减区间为(-
2
,-
6
)
,故D正确,从而得出结论.
解答:解:结合图象可得A=1,周期T=
ω
=2[
6
-(-
π
6
)
]=2π,∴ω=1,故函数解析式为f(x)=sin(x+φ).
由五点法作图可得-
π
6
+∅=0,∴∅=
π
6
,故f(x)=sin(x+
π
6
).
故由x+
π
6
=kπ+
π
2
,k∈z,可得函数的对称轴为 x=kπ+
π
3
,k∈z;且∅=
π
6
,最小正周期为2π,故A、B、C都不正确.
令2kπ+
π
2
≤x+
π
6
≤2kπ+
2
,k∈z,可得 2kπ+
π
3
≤x≤2kπ+
3
,k∈z,故函数f(x)在区间(-
2
,-
6
)
上单调递减,故D正确,
故选D.
点评:本题主要考查正弦函数的定义域和值域,对称性和周期性,由由函数y=Asin(ωx+∅)的部分图象求解析式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案