精英家教网 > 高中数学 > 题目详情
1.点P(x,y)是曲线3x2+4y2-6x-8y-5=0上的点,则z=x+2y的最大值和最小值分别是(  )
A.7,-1B.5,1C.7,1D.4,-1

分析 化曲线方程为椭圆的标准方程,然后利用三角代换结合两角和的正弦求得答案.

解答 解:由3x2+4y2-6x-8y-5=0,得$\frac{(x-1)^{2}}{4}+\frac{(y-1)^{2}}{3}=1$.
令$x-1=2cosθ,y-1=\sqrt{3}sinθ$,
则$x=1+2cosθ,y=1+\sqrt{3}sinθ$,
∴x+2y=3$+2\sqrt{3}sinθ+2cosθ$=3+4sin(θ+φ).
∴当sin(θ+φ)=1时,(x+2y)max=7;
当sin(θ+φ)=-1时,(x+2y)min=-1,
故选:A.

点评 本题考查椭圆的简单性质,考查了椭圆参数方程的应用,训练了利用三角函数求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合M={x|x=2k-1,k∈Z},m=2015,则有(  )
A.m∈MB.-m∉MC.{m}∈MD.{m}?M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,A={x|-3≤x≤1},B={x|-1<x<3},
求A∪B,、A∩B,CUA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(2ωx+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$.
(1)求ω;
(2)若将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到导函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,an>0,a1=5,n≥2时,an+an-1=$\frac{7}{{a}_{n}{-a}_{n-1}}+6$.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x+a1nx在x=1处的切线l与直线x+2y=0垂直.
(1)求实数a的值;
(2)已知函数g(x)=(2-m)f(x)+(3m-2)x+$\frac{1}{x}$,当m<0时,讨论g(x)的单调性;
(3)若存在实数t∈[0,2],使得对任意的x∈[1,k],不等式(x3-6x2+3x+t)ex≤f(x)-lnx恒成立,e为自然对数的底数,求正整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正四棱锥S-ABCD的高为$\sqrt{3}$,侧棱长为$\sqrt{7}$.
(1)求侧面上的斜高;
(2)求一个侧面的面积;
(3)求底面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l的方向向量为$\overrightarrow{a}$,平面α内两共点向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,下列关系中能表示l∥α的是(  )
A.$\overrightarrow{a}$=$\overrightarrow{OA}$B.$\overrightarrow{a}$=k$\overrightarrow{OB}$C.$\overrightarrow{a}$=p$\overrightarrow{OA}$+λ$\overrightarrow{OB}$D.以上均不能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个顶点为A(1,1),B(-1,-1),(2+$\sqrt{3}$,-2-$\sqrt{3}$),求三角形的三边所在直线的斜率及倾斜角.

查看答案和解析>>

同步练习册答案