精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

求直线l的普通方程及曲线C的直角坐标方程;

若直线l与曲线C交于AB两点,求线段AB的中点P到坐标原点O的距离.

【答案】(1)(2)

【解析】

(I)将代入,即可得到直线的普通方程,利用极坐标与直角坐标的互化公式,即可得到曲线C的直角坐标方程;

(II)将直线的参数方程代入曲线的直角坐标方程,利用韦达定理和参数的几何意义,即可求解点到原点的距离.

解:(I)将代入,整理得

所以直线的普通方程为.

代入

即曲线的直角坐标方程为.

(II)设的参数分别为.

将直线的参数方程代入曲线的直角坐标方程得

化简得

由韦达定理得

于是.

,则

.

所以点到原点的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fxsin2x).

1)求函数fx)的最小正周期;

2)求函数fx)的最大值,并写出取最大值时自变量x的集合;

3)求函数fx)在x[0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的切线,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1ym l2ym0),直线l1与函数y|log2x|的图象从左至右相交于点AB,直线l2与函数y|log2x|的图象从左至右相交于CD.记线段ACBDX轴上的投影长度分别为a b.当m变化时,的最小值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值和最小值,设

1)求的值;

2)若不等式上有解,求实数的取值范围;

3)若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+exg(x)=2xax3a为实常数.

(1)求g(x)的单调区间;

(2)当a=-1时,证明:存在x0∈(0,1),使得yf(x)和yg(x)的图象在xx0处的切线互相平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为,且中只有一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网+交通模式的迅猛发展,共享自行车在很多城市相继出现.某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

01

78

11

88

21

79

31

93

02

73

12

86

22

83

32

78

03

81

13

95

23

72

33

75

04

92

14

76

24

74

34

81

05

95

15

97

25

91

35

84

06

85

16

78

26

66

36

77

07

79

17

88

27

80

37

81

08

84

18

82

28

83

38

76

09

63

19

76

29

74

39

85

10

86

20

89

30

82

40

89

现用随机数法读取用户编号,且从第2行第6列的数开始向右读,从40名用户中抽取容量为10的样本.(下面是随机数表第1行第至第5行)

95 33 95 22 00 18 74 72 00 18 38 79 58 69 32

81 76 80 16 92 04 80 44 25 39 91 03 69 79 83

54 31 62 27 32 94 07 53 89 35 96 35 23 79 18

05 98 90 07 35 46 40 62 98 80 54 97 20 56 95

1)请你列出抽到的10个样本的评分数据;

2)计算所抽到的10个样本的均值和方差

3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为”.试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为的用户所占的百分比是多少?(参考数据:

查看答案和解析>>

同步练习册答案