精英家教网 > 高中数学 > 题目详情
7.已知a<b<0(ab≠0),试比较$\frac{1}{a}$和$\frac{1}{b}$的大小.

分析 把要比较的式子作差结合已知条件判断符号即可.

解答 解:∵$\frac{1}{a}$-$\frac{1}{b}$=$\frac{b-a}{ab}$,
∵a<b<0.∴b-a>0,ab>0,
∴$\frac{b-a}{ab}$>0.
∴$\frac{1}{a}$>$\frac{1}{b}$.

点评 本题考查比较两个数大小的方法,以及不等式的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知sinα-cosα=$\sqrt{2}$,求下列式子的值?
(1)sinαcosα=-$\frac{1}{2}$.
(2)sinα+cosα=0.
(3)sin2α+cos2α=1.
(4)sin3α+cos3α=0.
(5)sin3α-cos3α=$\frac{\sqrt{2}}{2}$.
(6)sin4α+cos4α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,且一个焦点和短轴的两个端点构成面积为1的等腰直角三角形.
(1)求椭圆的标准方程;
(2)过椭圆C右焦点F作直线交椭圆C于点M,N,又直线OM交直线x=2于点T,$\overrightarrow{OT}$=2$\overrightarrow{OM}$,求线段MN的长;
(3)半径为r的圆Q以椭圆C的右顶点为圆心,若存在直线l:y=kx,使直线l与椭圆C交于A,B两点,与圆Q分别交于G、H两点,点G在线段AB上,且|AG|=|BH|,求圆O的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知动圆C与直线x+y+2=0相切于点A(0,-2),圆C被x轴所截得的弦长为2,则满足条件的所有圆C的半径之和是6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|x2-k|在[0,2]上的最大值为2,则常数k等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且$\sqrt{3}$bcosC+$\sqrt{3}$ccosB=2csinA.
(1)试求∠C的大小;
(2)若c=$\sqrt{3}$,求△ABC面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={(x,y)|y=-$\sqrt{9-{x}^{2}}$},B={(x,y)|x+y+m=0},且A∩B≠∅,则实数m的取值范围[-3,3$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)为R的函数,且f(x)对?x,y∈R均有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0.则不等式$f(\sqrt{x}-{log_2}x)>0$的解集为(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数$f(x)=\left\{{\begin{array}{l}{lg({|x|-1}),|x|>1}\\{asin({\frac{π}{2}x}),|x|≤1}\end{array}}\right.$,关于x的方程f2(x)-(a+1)f(x)+a=0,给出下列结论:
①存在这样的实数a,使得方程由3个不同的实根;
②不存在这样的实数a,使得方程由4个不同的实根;
③存在这样的实数a,使得方程由5个不同的实数根;
④不存在这样的实数a,使得方程由6个不同的实数根.
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案