精英家教网 > 高中数学 > 题目详情

【题目】已知函数关于x的函数.

1)当时,求的值域;

2)若不等式恒成立,求实数m的取值范围;

3)若函数3个零点,求实数t的取值范围.

【答案】123

【解析】

1)首先根据对勾函数的单调性得到的单调性,结合定义域即可得值域;

2)利用分离参数思想得出恒成立,求不等式右边的最小值即可;

3)设,换元转化为方程的根的范围问题,再用根的分布方法求解.

1)函数上单调递减,在上单调递增;

的值域为

2)不等式恒成立;

,则

,∴

故实数m的取值范围:

3)根据题意有,则

,则

由条件3个零点,则

即方程有两个不等实数根;

且两个根满足:

设函数

时,,此时不满足条件;

,则

故实数t的取值范围:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为,两人各投一次称为一轮投篮.

求乙在前3次投篮中,恰好投进2个球的概率;

设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, , .

(Ⅰ)若的中点,求证: 平面

(Ⅱ)若 ,求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值;

2)求综合评分的中位数;

3)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中至多有一个一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红队队员甲、乙、丙与蓝队队员进行围棋比赛,甲对,乙对,丙对各一盘.已知甲胜、乙胜、丙胜的概率分别为0.60.50.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.

(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

合计

(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB分别是椭圆的左、右顶点,P为椭圆C的下顶点,F为其右焦点M是椭圆C上异于AB的任一动点,过点A作直线以线段AF为直径的圆交直线AM于点AN,连接FN交直线l于点G的坐标为,且,椭圆C的离心率为

求椭圆C的方程;

试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口的水深(米)是时间,单位:小时)的函数,下面是每天时间与水深的关系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

经过长期观测, 可近似的看成是函数

1)根据以上数据,求出的解析式

2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中几个小时可以安全的进出该港?

查看答案和解析>>

同步练习册答案