精英家教网 > 高中数学 > 题目详情
7.设数f(log2x)的定义域是(2,4),则函数$f({\frac{x}{2}})$的定义域是(  )
A.(2,4)B.(2,8)C.(8,32)D.$(\frac{1}{2},1)$

分析 根据复合函数的定义域之间的关系即可得到结论.

解答 解:∵f(log2x)的定义域是(2,4),
∴2<x<4.
即 1<log2x<2,
由1<$\frac{x}{2}$<2,解得:2<x<4.
则函数$f({\frac{x}{2}})$的定义域是(2,4).
故选:A.

点评 本题主要考查函数的定义域及其求法,利用复合函数定义域之间的关系是解决本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若存在实数x,使f(x)=x,则称x为f(x)的不动点.已知f(x)=$\frac{2x+a}{x+b}$有两个关于原点对称的不动点.
(1)求a,b须满足的充要条件;
(2)试用y=f(x)和y=x的图形表示上述两个不动点的位置(画草图).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.角θ的终边过点(3a-9,a+2),且sin2θ≤0,则a的范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P为椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1上一点,F1,F2分别为椭圆的左右焦点
(1)若|PF1|=4,N为PF1的中点,则ON=2$\sqrt{3}$-2.
(2)若PF1与y轴的交点M恰为PF1的中点,则M的坐标(0,±$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y=ax2(a>0),过点P(0,1)的直线l交抛物线C于A、B两点.
(Ⅰ)若抛物线C的焦点为(0,$\frac{1}{4}$),求该抛物线的方程;
(Ⅱ)已知过点A、B分别作抛物线C的切线l1、l2,交于点M,以线段AB为直径的圆经过点M,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2-3|x|-k有两个零点,则k的取值范围是(  )
A.(0,+∞)$∪\{-\frac{9}{4}\}$B.$[-\frac{9}{4},+∞)$C.[0,+∞)D.$(-∞,-\frac{9}{4})∪\{0\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?a∈R,a2≥0”的否定为(  )
A.?a∈R,a2<0B.?a∈R,a2≥0C.?a∉R,a2≥0D.?a∈R,a2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.p:|x-m|<1,q:x2-8x+12<0,且q是p的必要不充分条件,则m的取值范围是(  )
A.3<m<5B.3≤m≤5C.m>5或m<3D.m≥5或m≤3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)若$cosθ=\frac{{\sqrt{2}}}{3}$,求$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$的值.
(2)求函数$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定义域.

查看答案和解析>>

同步练习册答案