精英家教网 > 高中数学 > 题目详情
某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?
设A厂工作xh,B厂工作yh,总工作时数为th,则t=x+y,
且x+3y≥40,2x+y≥20,x≥0,y≥0,
可行解区域如图.
而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),
于是问题变为要在此可行解区域内,
找出格子点(x,y),使t=x+y的值为最小.
由图知当直线l:y=-x+t过Q点时,
纵、横截距t最小,但由于符合题意的解必须是格子点,
我们还必须看Q点是否是格子点.
解方程组
x+3y=40
2x+y=20

得Q(4,12)为格子点.
故A厂工作4h,B厂工作12h,可使所费的总工作时数最少.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

图中表示的区域满足不等式(  )
A.2x+2y-1>0B.2x+2y-1≥0C.2x+2y-1≤0D.2x+2y-1<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设变量x、y满足约束条件
x+y≥3
x-y≥-1
2x-y≤3
,则目标函数z=
y
x-2
的取值范围是(  )
A.[-2,
5
2
]
B.(-2,
5
2
C.(-∞,-2)∪(
5
2
,+∞)
D.(-∞,-2]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某服装制造商现有10m2的棉布料,10m2的羊毛料,和6m2的丝绸料.做一条裤子需要1m2的棉布料,2m2的羊毛料,1m2的丝绸料.一条裙子需要1m2的棉布料,1m2的羊毛料,1m2的丝绸料.一条裤子的纯收益是50元,一条裙子的纯收益是40元,则该服装制造商的最大收益为______元.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由不等式组
x≥0
y≥0
x+y-1≤0
表示的平面区域(图中阴影部分)为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:
资源\消耗量\产品甲产品(每吨)乙产品(每吨)资源限额(每天)
煤(t)94360
电力(kw•h)45200
劳动力(个)310300
利润(万元)612
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y满足约束条件
x+y≤3
y≤2x
y≥0
,则目标函数z=2x+y的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
x+y-5≤0
y≥x
x≥1
,则z=2x+3y的最大值为(  )
A.5B.10C.
25
2
D.14

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

查看答案和解析>>

同步练习册答案