【题目】某同学解答一道解析几何题:“已知直线l:与x轴的交点为A,圆O:经过点A.
(Ⅰ)求r的值;
(Ⅱ)若点B为圆O上一点,且直线AB垂直于直线l,求.”
该同学解答过程如下:
解答:(Ⅰ)令,即,解得,所以点A的坐标为.
因为圆O:经过点A,所以.
(Ⅱ)因为.所以直线AB的斜率为.
所以直线AB的方程为,即.
代入消去y整理得,
解得,.当时,.所以点B的坐标为.
所以.
指出上述解答过程中的错误之处,并写出正确的解答过程.
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.
根据该折线图,下列结论正确的是
A. 2016年各月的仓储指数最大值是在3月份
B. 2017年1月至12月的仓储指数的中位数为54%
C. 2017年1月至4月的仓储指数比2016年同期波动性更大
D. 2017年11月的仓储指数较上月有所回落,显示出仓储业务活动仍然较为活跃,经济运行稳中向好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】生态环境部环境规划院研究表明,京津冀区域PM2.5主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间的户数为( )
A.5B.15C.20D.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学解答一道三角函数题:“已知函数,且.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的最大值及相应x的值.”
该同学解答过程如下:
解答:(Ⅰ)因为,所以.因为,
所以.
(Ⅱ)因为,所以.令,则.
画出函数在上的图象,
由图象可知,当,即时,函数的最大值为.
下表列出了某些数学知识:
任意角的概念 | 任意角的正弦、余弦、正切的定义 |
弧度制的概念 | ,的正弦、余弦、正切的诱导公式 |
弧度与角度的互化 | 函数,,的图象 |
三角函数的周期性 | 正弦函数、余弦函数在区间上的性质 |
同角三角函数的基本关系式 | 正切函数在区间上的性质 |
两角差的余弦公式 | 函数的实际意义 |
两角差的正弦、正切公式 | 参数A,,对函数图象变化的影响 |
两角和的正弦、余弦、正切公式 | 二倍角的正弦、余弦、正切公式 |
请写出该同学在解答过程中用到了此表中的哪些数学知识.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(﹣1,1)上的奇函数,且f().
(Ⅰ)求实数m,n的值,并用定义证明f(x)在(﹣1,1)上是增函数;
(Ⅱ)设函数g(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时,g(x)=f(x),求函数g(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的函数,且对任意实数x,有f(x﹣2)=x2﹣3x+3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若{x|f(x﹣2)=﹣(a+2)x+3﹣b}={a},求a和b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请解决下列问题:
(1)设直棱柱的高为,底面多边形的周长为,写出直棱柱的侧面积计算公式;
(2)设正棱锥的底面周长为,斜高为,写出正棱锥的侧面积计算公式;
(3)设正棱台的下底面周长为,上底面周长为,斜高为,写出正棱台的侧面积计算公式;
(4)写出上述个侧面积计算公式之间的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com