精英家教网 > 高中数学 > 题目详情
2.设$f(x)=\left\{\begin{array}{l}1(1≤x≤2)\\ \frac{1}{2}{x^2}-1\;(2<x≤3)\end{array}\right.$,对任意的实数a,记h(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]}.
(1)h(0)=$\frac{5}{2}$.
(2)求h(a)的解析式及最小值.

分析 (1)根据题意,计算h(0)的值即可;
(2)设g(x)=f(x)-ax,讨论a的取值,写出对应的h(a)的解析式,再根据h(a)的解析式求出h(a)的最小值.

解答 解:(1)根据题意,得:
h(0)=max{f(x)|x∈[1,3]}-min{f(x)|x∈[1,3]}
=$\frac{7}{2}$-1
=$\frac{5}{2}$;…(1分)
(2)设$g(x)=f(x)-ax=\left\{\begin{array}{l}1-ax,\;x∈[1,2]\\ \frac{1}{2}{x^2}-ax-1,\;x∈(2,3]\end{array}\right.$,
且$\frac{1}{2}{x^2}-ax-1=\frac{1}{2}{(x-a)^2}-\frac{a^2}{2}-1$,
①当a≤0时,f(x)-ax不是单调减函数,
所以$h(a)=f(3)-3a-(f(1)-a)=\frac{5}{2}-2a$;
$g(3)-g(1)=\frac{7}{2}-3a-(1-a)=\frac{5}{2}-2a$;
②当$0<a≤\frac{5}{4}$时,$h(a)=g(3)-g(2)=\frac{5}{2}-a$;
③当$\frac{5}{4}<a≤2$时,h(a)=g(1)-g(2)=a;
④当2<a≤3时,$h(a)=g(1)-g(a)=\frac{a^2}{2}-a+2$;
⑤当3<a时,$h(a)=g(1)-g(3)=2a-\frac{5}{2}$;
所以h(x)=$\left\{\begin{array}{l}{\frac{5}{2}-2a,a≤0}\\{\frac{5}{2}-a,0<a<\frac{5}{4}}\\{a,\frac{5}{4}≤a≤2}\\{{\frac{1}{2}a}^{2}-a+2,2<a≤3}\\{2a-\frac{5}{2},a>3}\end{array}\right.$;…(4分)
综上,当$a=\frac{5}{4}$时,h(a)取得最小值$\frac{5}{4}$.…(5分)

点评 本题考查了新定义的求函数的解析式与求函数值的应用问题,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点是F1,F2,点P($\sqrt{2}$,1)在椭圆C上,且|PF1|+|PF2|=4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P关于x轴的对称点为Q,M是椭圆C上一点,直线MP和MQ与x轴分别相交于点E,F,O为原点.证明:|OE|•|OF|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且过点F的直线y=2x-4与此双曲线只有一个交点,则双曲线的方程为$\frac{5{x}^{2}}{4}$-$\frac{5{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知奇函数f(x)满足$f(x+\frac{3}{2})=-f(x)$,且当x∈(0,2)时,f(x)=2x,则f(5)=(  )
A.32B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.lg2+2lg5=(  )
A.1+lg5B.2+lg5C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算:$\lim_{n→∞}\frac{2^n}{{{3^n}+1}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线 过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线 有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC是边长为2的等边三角形,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数$y=2sin({3x+\frac{π}{6}})$的图象,只需把y=2sinx的图象上所有的点(  )
A.向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
B.向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
C.向右平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变)
D.向左平移$\frac{π}{6}$,再把所得各点的横坐标伸长到原来的$\frac{1}{3}$倍(纵坐标不变)

查看答案和解析>>

同步练习册答案