精英家教网 > 高中数学 > 题目详情
用数学归纳法证明,则当n=k+1时左端应在n=k的基础上增加 (  ) 
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
D
解:当n=k时,等式左端=1+2++k2
当n=k+1时,等式左端=1+2++k2+(k2+1)+(k2+2)+(k2+3)+…+(k+1)2,增加了2k+1项.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

平面内有n(n∈Nn≥2)条直线,其中任何两条不平行,任何三条不过
同一点,证明:交点的个数f(n)=.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列,…,,….S为其前n项和,求S、S、S、S,推测S公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设数列的前n项和为且方程有一根为,n=1,2,3…,试求的值,猜想的表达式,并用数学归纳法加以证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知数列的各项均为正数,
(1)求数列的通项公式;
(2)证明对一切恒成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
数列满足.
(Ⅰ)计算,并由此猜想通项公式
(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

请观察以下三个式子:
;
;

归纳出一般的结论,并用数学归纳法证明之.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形展品,其中第一堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图方式固定摆放,从第二层开始每层的小球自然垒放在下一层之上,第堆的第层就放一个乒乓球,以表示第堆的乒乓球总数.
             
(1)求
(2)求(用表示)(可能用到的公式:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知
(1)当时,试比较的大小关系;
(2)猜想的大小关系,并给出证明.

查看答案和解析>>

同步练习册答案