精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的单调区间;

(2)若在区间上的最大值为,求的值;

(3)若,有不等式恒成立,求实数的取值范围.

【答案】(1)上是增函数,在上是减函数;(2);(3).

【解析】

试题分析:(1)先求函数的定义域,再求函数的导数,解不等式可求函数的单调递减区间与单调递增区间;(2)因为,分分别讨论函数的单调性求其最值即可;(3)恒成立等价于,令,求函数的导数,研究单调性,求其最小值,由求这即可.

试题解析: (1)易知定义域为

,令,得

时,;当时,

所以上是增函数,在上是减函数.

(2)因为

,则,从而上是增函数,

,不合题意;

,则由,即,若上是增函数,由知不合题意,

,即

从而上是增函数,在上为减函数,

,所以,因为,所以所求的

(3)因为恒成立,所以

恒大于0,所以为增函数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1在区间上具有时间的单调性,求实数的取值范围;

2,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市园林局准备绿化一块直径为的半圆空地,以外的地方种草,的内接正方形为一水池,其余的地方种花,若为定值),,设的面积为,正方形的面积为

(1)用表示

(2)当为何值时,取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数). 

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)当函数处取得极值,求函数的解析式;

(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为的导函数.

(1)求方程的解集;

(2)求函数的最大值与最小值;

(3)若函数在定义域上恰有2个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点分别为是 .

(Ⅰ)求边上的高所在的直线方程;

(Ⅱ)求过点且在两坐标轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设

)求的单调区间和最小值;

)讨论的大小关系;

)求的取值范围,使得对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对绵阳南山实验学校的500名教师的年龄进行统计分析,年龄的频率分布直方图如图所示,规定年龄在内的为青年教师,内的为中年教师,内的为老年教师.

(1)求年龄内的教师人数;

(2)现用分层抽样的方法从中、青年中抽取18人进行同课异构课堂展示,求抽到年龄在内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面.

(1)求证:平面

(2)点在线段上运动,设平面与平面所成二面角为,试求的取值范围.

查看答案和解析>>

同步练习册答案