精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则
1
a
+
2
b
的最小值为
 
考点:简单线性规划,基本不等式
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,确定z取最大值点的最优解,利用基本不等式的性质,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b

则直线的斜率k=-
b
a
<0,截距最大时,z也最大.
平移直y=-
a
b
x+
z
b
,由图象可知当直线y=-
a
b
x+
z
b
经过点A时,
直线y=-
a
b
x+
z
b
的截距最大,此时z最大,
3x-y-6=0
x-y+2=0
,解得
x=4
y=6

即A(4,6),
此时z=4a+6b=6,
2a
3
+b=1

1
a
+
2
b
=(
1
a
+
2
b
)(
2a
3
+b
)=
8
3
+
b
a
+
4a
3
8
3
+2
b
a
4a
3
=
8
3
+
4
3
3
=
8+4
3
3

当且仅当
b
a
=
4a
3b
,即a=
3
2
b
时取等号,此时b=
3-
3
2
,a=3-
3
时取等号..
故答案为:
8+4
3
3
点评:本题主要考查线性规划的应用,利用z的几何意义先求出最优解是解决本题的关键,利用基本不等式的解法和结合数形结合是解决本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,若
3+i
z
=1-i,则z的共轭复数为(  )
A、1-2i
B、2-4i
C、
2
-2
2
i
D、1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cos(x+2θ)+sin(x-2θ)是奇函数,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1的棱长为1,连结AC1交平面A1BD于点H,给出以下结论:
①AC1⊥平面A1BD;  
AH=
3
3

③直线AC1与BB1所成的角为60°.
则正确的结论是
 
.(正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:“若(x-3)2+y2≠0,则x≠3”是
 
命题(填真、假).

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,以下四个命题:
①若α⊥β,m⊥α,则m∥β;   
②若α⊥γ,β⊥γ,则α∥β;
③若m⊥α,n∥m,则n⊥α;    
④若m∥α,n∥α,则m∥n.
其中正确命题的序号是
 
.(将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
2x-y-2≥0
x-2y+2≤0
x+y-13≤0
,则z=xy的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且当x<0时,f(x)=x2+2x,则f(1)=(  )
A、1B、-1C、3D、-3

查看答案和解析>>

同步练习册答案