精英家教网 > 高中数学 > 题目详情
11.椭圆C的中心在原点,焦点在坐标轴上,经过P1($\sqrt{6}$,1),P2($\sqrt{3}$,$\sqrt{2}$).
(1)求椭圆C的标准方程;
(2)斜率不为0的直线l与椭圆C交于M、N两点,定点A(0,$\sqrt{3}$),若|AM|=|AN|,求直线1的斜率k的取值范围.

分析 (1)由题意设椭圆的方程为mx2+ny2=1,代点解关于mn的方程组可得;
(2)利用点差法,结合|AM|=|AN|,可得AE⊥MN,从而可得E的坐标,利用E在椭圆内部,解关于k的不等式可得.

解答 解:(1)由题意设椭圆的方程为mx2+ny2=1,其中m,n为不相等的正数,
代入P1($\sqrt{6}$,1),P2($\sqrt{3}$,$\sqrt{2}$)可得6m+n=1且3m+2n=1,
解方程组可得m=$\frac{1}{9}$,n=$\frac{1}{3}$,
∴椭圆C的标准方程为:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1;
(2)设M(x1,y1),N(x2,y2),其中点E(x0,y0),
则由MN在椭圆C上可得$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{9}+\frac{{{y}_{1}}^{2}}{3}=1}\\{\frac{{{x}_{2}}^{2}}{9}+\frac{{{y}_{2}}^{2}}{3}=1}\end{array}\right.$,
两方程相减可得$\frac{1}{9}$(x1+x2)(x1-x2)+$\frac{1}{3}$(y1+y2)(y1-y2)=0
∴$\frac{1}{9}$x0(x1-x2)+$\frac{1}{3}$y0(y1-y2)=0,即k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{0}}{3{y}_{0}}$①
又AE⊥MN,故$\frac{{y}_{0}-\sqrt{3}}{{x}_{0}}$=-$\frac{1}{k}$,即k=-$\frac{{x}_{0}}{{y}_{0}-\sqrt{3}}$②
由①②可得$\left\{\begin{array}{l}{{x}_{0}=\frac{3\sqrt{3}k}{2}}\\{{y}_{0}=-\frac{\sqrt{3}}{2}}\end{array}\right.$,
∵E在椭圆内部,∴$\frac{{{x}_{0}}^{2}}{9}+\frac{{{y}_{0}}^{2}}{3}$<1,
∴代入可得$\frac{3}{4}$k2+$\frac{1}{4}$<1,
∴k2<1,又k≠0,
∴-1<k<1且k≠0

点评 本题考查椭圆的性质与标准方程,正确运用点差法是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1(a>3)的两个焦点分别为F1,F2.其离心率为$\frac{4}{5}$.椭圆上点M到F1的距离为2.点N是MF1的中点.O是椭圆的中心.求线段ON的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在(0,π)上的函数f(π-x)=f(x),对任意x$∈(0,\frac{π}{2})$,不等式f(x)-f′(x)tanx>0恒成立,则下列不等式成立的是(  )
A.$\sqrt{6}$f($\frac{π}{6}$)$<\sqrt{3}$f($\frac{π}{4}$)$<\sqrt{2}$f($\frac{2π}{3}$)B.$\sqrt{6}$f($\frac{π}{6}$)$<\sqrt{2}$f($\frac{2π}{3}$)$<\sqrt{3}$f($\frac{π}{4}$)C.$\sqrt{2}$f($\frac{2π}{3}$)$<\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{6}$f($\frac{π}{6}$)D.$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{6}$f($\frac{π}{6}$)$\sqrt{2}$f($\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.P是圆x2+y2=1上的动点,作PD⊥y轴,D为垂足,则PD中点的轨迹方程为(  )
A.$\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1B.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1D.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函教y=log3(x-2)+3的图象是由函数y=1og3x的图象先向右平移2个单位、再向上平移3个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点O(0,0),A(-8,0),B(0,3),Q(3,2),动点P满足条件|PA|=3|PO|.
(1)求动点P的轨迹C的方程;
(2)设直线l经过点B,直线m经过点Q.问是否存在直线l使之被轨迹C截得的线段MN恰被直线m垂直平分?若存在,求出直线l与直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若奇函数f(x)=x3+(b-1)x2+cx的三个零点x1,x2,x3满足x1x2+x2x3+x3x1=-2013,则b+c=-2012.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一直线l绕其上一点P逆时针旋转15°后得到直线$\sqrt{3}x$-y-$\sqrt{3}$=0,再逆时针旋转75°后得到直线x+y-1=0,则l的方程为(  )
A.x-y-1=0B.x+y-1=0C.$\sqrt{3}$x+y-$\sqrt{3}$=0D.$\sqrt{3}$x-y+$\sqrt{3}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x>1,且x≠$\frac{4}{3}$,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.

查看答案和解析>>

同步练习册答案