【题目】在四棱锥中,底面为正方形,,为等边三角形,线段的中点为,若,则此四棱锥的外接球的表面积为______.
【答案】
【解析】
设四棱锥的外接球的球心为,底面的中心为,根据的相对位置分类讨论,结合锐角三角函数、勾股定理、球和正方形以及矩形的几何性质、球的表面积公式进行求解即可.
设四棱锥的外接球的球心为,其半径为,底面的中心为.
当位于点处时,如下图所示:
取的中点,连接,,因为底面为正方形,,为等边三角形,所以,,而,
因为,所以,
设正方形的对角线的交点,过做平面,
则由题意可知垂足在上,显然有,
在直角三角形中,,
,所以
过过做,因此四边形是矩形,
所以有,
正方形中,,
由可知:,
在直角三角形中,得
,
由解得:,不符合题意,舍去;
当位于点处时,如上图所示:
由可知:,
在直角三角形中,得
,
由解得:,
所以此四棱锥的外接球的表面积为.
故答案为:
科目:高中数学 来源: 题型:
【题目】已知正项数列中,,点在抛物线上.数列中,点在经过点,以为方向向量的直线上.
(1)求数列,的通项公式;
(2)若,问是否存在,使得成立?若存在,求出的值;若不存在,说明理由;
(3)对任意的正整数,不等式成立,求正数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒最近在全国蔓延,具有很强的人与人之间的传染性,该病毒在进入人体后一般有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间.假设每位病毒携带者在潜伏期内每天有位密切接触者,接触病毒携带者后被感染的概率为,每位密切接触者不用再接触其他病毒携带者.
(1)求一位病毒携带者一天内感染的人数的均值;
(2)若,时,从被感染的第一天算起,试计算某一位病毒携带者在14天潜伏期内,被他平均累计感染的人数(用数字作答);
(3)3月16日20时18分,由我国军事科学院军事科学研究院陈薇院士领衔的科学团队,研制重组新型冠状病毒疫苗获批进入临床状态,新疫苗的使用,可以极大减少感染新型冠状病毒的人数,为保证安全性和有效性,某科研团队抽取500支新冠疫苗,观测其中某项质量指标值,得到如下频率分布直方图:
①求这500支该项质量指标值的样本平均值(同一组的数据用该组区代表间的中点值)
②由直方图可以认为,新冠疫苗的该项质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差,经计算可得这500支新冠疫苗该项指标值的样本方差.现有5名志愿者参与临床试验,观测得出该项指标值分别为:206,178,195,160,229,试问新冠疫苗的该项指标值是否正常,为什么?
参考数据:,若,则,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与轴相切于点,过点,分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)证明:AC⊥PD;
(2)若PE=2BE,求三棱锥P﹣ACE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为提高服务质量,随机调查了60名男顾客和80名女顾客,每位顾客均对该商场的服务给出满意或不满意的评价,得到下面不完整的列联表:
满意 | 不满意 | 合计 | |
男顾客 | 50 | ||
女顾客 | 50 | ||
合计 |
(1)根据已知条件将列联表补充完整;
(2)能否有的把握认为男、女顾客对该商场服务的评价有差异?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面中,△ABC的两个顶点A、B的坐标分别为A(﹣1,0),B (1,0),平面内两点G、M同时满足下列条件:(1);(2);(3)∥,则△ABC的顶点C的轨迹方程为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线C:1(a>0,b>0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为( )
A.y=±xB.y=±xC.y=±2xD.y=±x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com