精英家教网 > 高中数学 > 题目详情
5.如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,EF⊥PB交PB于点F.
(Ⅰ)求点C到平面BDE的距离;
(Ⅱ)证明:PB⊥平面DEF.

分析 (Ⅰ)利用VC-BED=VE-BCD,求点C到平面BDE的距离;
(Ⅱ)证明:DE⊥平面PCB,得出DE⊥PB,又EF⊥PB,且EF∩DE=E,所以PB⊥平面DEF.

解答 (Ⅰ)解:取CD的中点O,连结EO,则EO∥PD.(1分)
∵PD⊥底面ABCD,PD=2,
∴EO⊥底面ABCD,$EO=\frac{1}{2}PD=1$.  (2分)
∵ABCD是正方形且DC=2,∴${S_{△BCD}}=\frac{1}{2}BC•DC=\frac{1}{2}×2×2=2$,∴${V_{E-BCD}}=\frac{1}{3}{S_{△BCD}}•EO=\frac{1}{3}×2×1=\frac{2}{3}$.(3分)
在Rt△PDC中,$DE=\frac{1}{2}PC=\sqrt{2}$.在Rt△BCE中,$BE=\sqrt{B{C^2}+C{E^2}}=\sqrt{6}$.
在Rt△BAD中,$BD=2\sqrt{2}$.
因为BD2=BE2+DE2,所以BE⊥DE.(4分)
∴${S_{△BED}}=\frac{1}{2}DE•BE=\frac{1}{2}×\sqrt{2}×\sqrt{6}=\sqrt{3}$.
设点C到平面BDE的距离为h,则${V_{C-BED}}=\frac{1}{3}{S_{△BED}}•h=\frac{{\sqrt{3}h}}{3}$.(5分)
∵VC-BED=VE-BCD,即$\frac{{\sqrt{3}h}}{3}=\frac{2}{3}$,解得$h=\frac{{2\sqrt{3}}}{3}$.
故点C到平面BDE的距离为$\frac{{2\sqrt{3}}}{3}$.(6分)
(Ⅱ)证明:∵PD⊥底面ABCD且BC?底面ABCD,∴PD⊥BC.
因为ABCD是正方形,所以BC⊥DC.
又PD∩DC=D,所以BC⊥平面PDC.(7分)
因为DE?平面PDC,所以BC⊥DE.(8分)
因为DE是等腰直角三角形PDC斜边PC上的中线,所以DE⊥PC.(9分)
又PC∩BC=C,所以DE⊥平面PCB.(10分)
因为PB?平面PCB,所以DE⊥PB.(11分)
又EF⊥PB,且EF∩DE=E,所以PB⊥平面DEF.(12分)

点评 本题考查线面垂直的判定与性质,考查等体积方法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若对于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将函数$y=3sin(2x+\frac{π}{3})$的图象向右平移φ($0<φ<\frac{π}{2}$)个单位后,所得函数为偶函数,则φ=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2分别是双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心率的取值范围是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定点Q($\sqrt{3}$,0),P为圆N:${(x+\sqrt{3})^2}+{y^2}=24$上任意一点,线段QP的垂直平分线交NP于点M.
(Ⅰ)当P点在圆周上运动时,求点M (x,y) 的轨迹C的方程;
(Ⅱ)若直线l与曲线C交于A、B两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,求证:直线l与某个定圆E相切,并求出定圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为(  )
A.120B.40C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是(  )
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae-kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.
(1)a=7;
(2)求k的值;
(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为(  )
A.25B.20C.12D.5

查看答案和解析>>

同步练习册答案