【题目】已知函数.
(Ⅰ)当时,求函数的极值;
(Ⅱ)时,讨论的单调性;
(Ⅲ)若对任意的恒有成立,求实数的取值范围.
【答案】(Ⅰ)函数的极小值为,无极大值;(Ⅱ)当时,函数的在定义域单调递增;当时,在区间,上单调递减,在区间上单调递增;当时,在区间,上单调递减,在区间,上单调递增.
(Ⅲ).
【解析】
试题(1)函数的定义域为, 当时,函数,利用导函数求出函数的单调性,即可求出函数的极值;
(2)由,所以,
令,得,,对、、分类讨论,求出的单调性;
(3)若对任意的恒有成立,等价于当,对任意的,恒有成立,由(Ⅱ)知,,所以上式化为对任意的,恒有成立,即,因为,所以,所以.
试题解析:(1)函数的定义域为.,令,
得;(舍去).
当变化时,的取值情况如下:
— | 0 | ||
减 | 极小值 | 增 |
所以,函数的极小值为,无极大值.
(2),令,得,,
当时,,函数的在定义域单调递减;
当时,在区间,,上,单调递减,
在区间,上,单调递增;
当时,在区间,,上,单调递减,
在区间,上,单调递增.
(3)由(2)知当时,函数在区间单调递减;所以,当时,,
问题等价于:对任意的,恒有成立,即,因为a<0,,所以,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的班和文史类专业的班各抽取名同学参加环保知识测试,统计得到成绩与专业的列联表:( )
优秀 | 非优秀 | 总计 | |
班 | 14 | 6 | 20 |
班 | 7 | 13 | 20 |
总计 | 21 | 19 | 40 |
附:参考公式及数据:
(1)统计量:,().
(2)独立性检验的临界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
则下列说法正确的是
A. 有的把握认为环保知识测试成绩与专业有关
B. 有的把握认为环保知识测试成绩与专业无关
C. 有的把握认为环保知识测试成绩与专业有关
D. 有的把握认为环保知识测试成绩与专业无关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线(a>0,b>0)的右焦点为F(3,0),左、右顶点分别为M,N,点P是E在第一象限上的任意一点,且满足kPMkPN=8.
(1)求双曲线E的方程;
(2)若直线PN与双曲线E的渐近线在第四象限的交点为A,且△PAF的面积不小于3,求直线PN的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题p:,则¬p:x∈R,x2+x+1<0
B.在△ABC中,“A<B”是“sinA<sinB”的既不充分也不必要条件
C.若命题p∧q为假命题,则p,q都是假命题
D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“x≠1,则x2﹣3x+2≠0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“x=5”是“x2-4x-5=0”的充分不必要条件
C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”
D.已知命题p:x∈R,x2+x-1<0,则p:x∈R,x2+x-1≥0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线与轴交于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设分别是椭圆的左、右焦点,已知椭圆的长轴为是椭圆上一动点,的最大值为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,为椭圆上一点,为坐标原点,且满足,其中,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com