精英家教网 > 高中数学 > 题目详情
12.在正方体ABCD-A1B1C1D1中,点P为正方形A1B1C1D1内部及边上的动点,且BD⊥平面AA1P,则直线BP与AD1所成角θ的取值范围是(  )
A.0<θ≤$\frac{π}{3}$B.0<θ≤$\frac{π}{2}$C.0≤θ≤$\frac{π}{3}$D.0≤θ≤$\frac{π}{2}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线BP与AD1所成角θ的取值范围.

解答 解:∵在正方体ABCD-A1B1C1D1中,点P为正方形A1B1C1D1内部及边上的动点,且BD⊥平面AA1P,
∴点P在线段A1C1上移动,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
当点P在C1处时,直线BP∥AD1,此时θ=0;
当点P在A1处时,A(2,0,0),D1(0,0,2),B(2,2,0),P(2,0,2),
$\overrightarrow{A{D}_{1}}$=(-2,0,2),$\overrightarrow{BP}$=(0,-2,2),
cosθ=$\frac{|\overrightarrow{A{D}_{1}}•\overrightarrow{BP}|}{|\overrightarrow{A{D}_{1}}|•|\overrightarrow{BP}|}$=$\frac{4}{\sqrt{8}•\sqrt{8}}$=$\frac{1}{2}$,$θ=\frac{π}{3}$;
当P为A1C1中点时,P(1,1,2),$\overrightarrow{BP}$=(-1,-1,2),
cosθ=$\frac{|\overrightarrow{A{D}_{1}}•\overrightarrow{BP}|}{|\overrightarrow{A{D}_{1}}|•|\overrightarrow{BP}|}$=$\frac{2+4}{\sqrt{8}•\sqrt{6}}$=$\frac{\sqrt{3}}{2}$,$θ=\frac{π}{6}$.
∴0$≤θ≤\frac{π}{3}$.
故选:C.

点评 本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=cos($\frac{k}{4}$x+$\frac{2}{3}$)的周期不大于2,则正整数k的最小值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且4Sn=an+1(n∈N*).
(Ⅰ)求a1,a2
(Ⅱ)设bn=log3|an|,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB,PC的中点,设AC中点为O.
(1)求证:平面EFO∥平面PAD
(2)若∠PDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(1)求f(-1)和f′(-1)的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题“在整数集中,若x,y都是偶数,则x+y是偶数”的逆命题是:在整数集中,若x+y是偶数,则x,y都是偶数..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.非空集合S⊆N*,且满足条件“x∈S,则(10-x)∈S”,则集合S的所有元素之和的总和为125.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={1,2,m},B={3,4}.若A∩B={3},则实数m=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中.
(1)求证:SG⊥平面EFG;
(2)请指出四面体S-EFG中有哪些平面互相垂直;
(3)若M,N分别是SF,GE的中点,求异面直线MN与SE所成角的余弦值.

查看答案和解析>>

同步练习册答案