精英家教网 > 高中数学 > 题目详情

【题目】已知,设命题函数R上单调递减,命题对任意实数x,不等式恒成立.

1)求非q为真时,实数c的取值范围;

2)如果命题为真命题,且为假命题,求实数c的取值范围.

【答案】12

【解析】

1)先写出,再根据为真时,判别式大于等于0,求解实数的取值范围;

2)由命题“ ”为真命题,“ ”为假命题,得出一真一假.然后利用交、并、补集的混合运算求解.

(1)由题可知,:存在,不等式成立;

为真时,,即

2)因为命题函数R上单调递减,

若命题p为真,则

已知命题对任意实数x,不等式恒成立,

若命题q为真,则

又因为,所以

因为命题为真命题,为假命题,

所以中一真一假,

pq假时,,当pq真时,

综上所述:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:

(1)求圆的圆心C的坐标和半径长;

(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于两点,求证:为定值;

(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使的面积最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面. 且点的中点.

1 求证:平面

2 与平面所成角的正弦值;

3 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求证:平面ABCD;

(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4:坐标系与参数方程)

已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是t为参数).

1)求曲线C的直角坐标方程和直线L的普通方程;

2)设点Pm0),若直线L与曲线C交于AB两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:

其中健康指数的含义是:2代表健康1代表基本健康0代表不健康,但生活能够自理代表生活不能自理,按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位,则被访问地3位老龄人中恰有1位老龄人的健康指数不大于0的概率为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列)的通项公式为.

1)分别求的二项展开式中的二项式系数之和与系数之和;

2)求的二项展开式中的系数最大的项;

3)记),求集合的元素个数(写出具体的表达式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖騰.在如下图所示的阳马P-ABCD中,侧棱底面ABCD,且,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,鳖臑有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:p(2cosθ-sinθ)=6.

(1)试写出直线l的直角坐标方程和曲线C1的参数方程;

(2)在子曲线C1上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

同步练习册答案