【题目】已知且,设命题函数在R上单调递减,命题对任意实数x,不等式恒成立.
(1)求非q为真时,实数c的取值范围;
(2)如果命题为真命题,且为假命题,求实数c的取值范围.
科目:高中数学 来源: 题型:
【题目】已知圆C:.
(1)求圆的圆心C的坐标和半径长;
(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于两点,求证:为定值;
(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使的面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面.,, 且点为的中点.
(1) 求证:平面;
(2) 求与平面所成角的正弦值;
(3) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求证:平面ABCD;
(II)求证:平面ACF⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,代表“生活不能自理”,按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位,则被访问地3位老龄人中恰有1位老龄人的健康指数不大于0的概率为___
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列()的通项公式为().
(1)分别求的二项展开式中的二项式系数之和与系数之和;
(2)求的二项展开式中的系数最大的项;
(3)记(),求集合的元素个数(写出具体的表达式).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖騰.在如下图所示的阳马P-ABCD中,侧棱底面ABCD,且,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,鳖臑有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:p(2cosθ-sinθ)=6.
(1)试写出直线l的直角坐标方程和曲线C1的参数方程;
(2)在子曲线C1上求一点P,使点P到直线l的距离最大,并求出此最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com