精英家教网 > 高中数学 > 题目详情
已知函数,且
(1)求的值,并确定函数的定义域;
(2)用定义研究函数范围内的单调性;
(3)当时,求出函数的取值范围.
(1),定义域:;(2)上是减函数,上是增函数;
(3)

试题分析:(1)直接代入列出关于的方程即可;(2)要正确理解单调性的定义,明确用定义研究(或证明)函数的单调性的格式过程,设,然后比较的大小,通常是作差(也可),确定差的正负;(3)由(2)中的单调性,可容易求出函数的取值范围.
试题解析:(1),定义域:;       3分
(2)令,则

            6分
故当时,;当时,
∴函数上单调减,在上单调增;     8分
(3)由(2)及函数为奇函数知,函数为增函数,在为减函数,故当时,,   10分

∴当时,的取值范围是.        12
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的定义域和值域;(2)若函数有最小值为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知不等式对于恒成立,则实数的取值范围是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,当时,函数的最小值为-4,则的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的定义域是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域为______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=-x4+2x2+3的最大值为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案