精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax-1(x≥0)的图象经过点(3,数学公式),其中a>0且a≠1.
(1)求a的值;
(2)求函数的值域.

解:(1)∵函数f(x)=ax-1(x≥0)的图象经过点(3,),
∴a3-1=a2=
又∵a>0且a≠1.
∴a=
(2)由(1)得f(x)=x-1
∵0<<1,
故f(x)=x-1在[0,+∞)上为减函数
故当x=0时,f(x)取最大值3
当x趋于+∞时,f(x)值趋于0
故函数的值域为(0,3]
分析:(1)将点(3,)代入函数f(x)=ax-1(x≥0)的解析式,结合a>0且a≠1,可求出底数a的值;
(2)根据(1)中函数的解析式,结合指数函数的单调性及值域,结合x≥0,可得函数的值域.
点评:本题考查的知识点是函数解析式的求法,函数的值域,熟练掌握指数函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案