精英家教网 > 高中数学 > 题目详情
a
b
c
是任意的非零平面向量,且相互不共线,则
(
a•
b
)
c
-(
c
a
)
b
=0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直         
(3
a
+2
b
)(3
a
-2
b
)=9|
a
|2-4|
b
|2
中,是真命题的有(  )
分析:两个向量数量积的几何意义可得①不成立,由两个向量加减法的意义可得②正确.根据两个向量垂直的性质可得③不正确.根据两个向量数量积公式可得④正确,从而得出结论.
解答:解:由题意可得(
a•
b
)  •
c
表示与
c
共线的向量,(
c
a
)•
b
表示与
b
共线的向量,故①不成立.
由两个向量加减法的意义、三角形任意两边之差小于第三边可得 ②|
a
|-|
b
|<|
a
-
b
|
正确.
[(
b
c
)
•a
- (
c
a
)•
b
]•
c
=(
b
 •
c
)•( 
a
c
)
-(
c
a
) (
b
c
)
=0,
(
b
c
)•
a
- (
c
a
)•
b
  与
c
垂直,故③不正确.
由于(3
a
+2
b
)(3
a
-2
b
)
=3
a
2
-4
b
2
=9|
a
|2-4|
b
|2
,故④正确.
故选D.
点评:本题主要考查两个向量数量积公式,两个向量数量积的几何意义和运算性质,两个向量垂直的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直;
(3
a
+2
b
)•(3
a
-2
b
)
=9|
a
|2-4|
b
|2
中是真命题的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量且互不共线,以下四个命题:
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|+|
b
|>|
a
+
b
|

(
b
c
)•
a
-(
c
a
)•
b
c
垂直

④两单位向量
e1
e2
平行,则
e1
e2
=1

⑤将函数y=2x的图象按向量
a
平移后得到y=2x+6的图象,
a
的坐标可以有无数种情况.
其中正确命题是
②③⑤
②③⑤
(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,给定下列结论
①(
a
b
)•
c
-(
c
a
)•
b
=
0
   
②|
a
|-|
b
|<|
a
-
b
|
③(
b
c
)•
a
-(
c
a
)•
b
不与
c
垂直
④(3
a
+2
b
)•(3
a
-2
b
)=9
a2
-4
b2

其中正确的叙述有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,有下列命题:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不与
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命题的有(  )

查看答案和解析>>

同步练习册答案