【题目】椭圆的左、右焦点为,离心率为,已知过轴上一点作一条直线:,交椭圆于两点,且的周长最大值为8.
(1)求椭圆方程;
(2)以点为圆心,半径为的圆的方程为.过的中点作圆的切线,为切点,连接,证明:当取最大值时,点在短轴上(不包括短轴端点及原点).
【答案】(1)(2)见解析
【解析】
(1)利用三角形的周长的最大值结合椭圆的定义,求出a,利用离心率求解c,然后求出b,即可得到椭圆方程.
(2)设A(x1,y1),B(x2,y2),联立,利用韦达定理,结合△>0得m2<4k2+2,求出C的坐标,求出|NC|,|NE|,利用函数的导数求出最大值,推出m的范围.
解:(1)由题意得,
∴
∵,∴,∴,
∴所求椭圆方程为.
(2)设,联立得,
由得(*),且,∴
∴
∵以点为圆心,为半径的圆的方程为,∴,
∴,整理得
∵,∴
令,
∴,∴
令,则,
∴在上单调递增,∴,当且仅当时等号成立,
此时取得最大值,且,
∴,∴且,
∴点在短轴上(不包括短轴端点及原点).
科目:高中数学 来源: 题型:
【题目】已知函数(且),定义域均为.
(1)若当时,的最小值与的最小值的和为,求实数的值;
(2)设函数,定义域为.
①若,求实数的值;
②设函数,定义域为.若对于任意的,总能找到一个实数,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是( )
A. 函数的最小正周期为 B. 函数在区间上单调递增
C. 函数在区间上的最小值为 D. 是函数的一条对称轴
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的有( )
(1)很小的实数可以构成集合;
(2)集合与集合是同一个集合;
(3) 这些数组成的集合有5个元素;
(4)任何集合至少有两个子集.
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的最小值;
(2)当时,记函数的所有单调递增区间的长度为,所有单调递减区间的长度为,证明:.(注:区间长度指该区间在轴上所占位置的长度,与区间的开闭无关.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列的定义可用数学符号语言描述为________,其中,其通项公式_________,__________=_________,等差数列中,若则________()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对于任意的,都有且当时,,若.
(1)求证:为奇函数;
(2)求证: 是上的减函数;
(3)求函数在区间[-2,4]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为,乙每次通过的概率为,且甲乙每次是否通过相互独立.
(Ⅰ)求甲乙至少有一人通过体能测试的概率;
(Ⅱ)记为甲乙两人参加体能测试的次数和,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com