精英家教网 > 高中数学 > 题目详情
17.(1)数列1,0,1,0,1,0,…的通项公式是$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$
(2)数列$\frac{1}{3}$,$\frac{1}{2}$,$\frac{3}{5}$,$\frac{2}{3}$…的通项公式是$\frac{n}{n+2}$.

分析 根据数列项的特点即可得到结论.

解答 解:(1)数列1,0,1,0,1,0,…等价为$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$-$\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$-$\frac{1}{2}$,
故对应的通项公式为$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$,
(2)数列$\frac{1}{3}$,$\frac{1}{2}$,$\frac{3}{5}$,$\frac{2}{3}$…等价为数列$\frac{1}{3}$,$\frac{2}{4}$,$\frac{3}{5}$,$\frac{4}{6}$…
则对应的通项公式为$\frac{n}{n+2}$
故答案为:$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$,$\frac{n}{n+2}$

点评 本题主要考查数列通项公式的求解,根据数列项的规律是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某校对新生的上学所需时间进行了统计(单位:分钟),并将所得数据绘制成频率分布直方图,(如图),其中所需时间的范围为[0,100],数据分组[0,20),[20,40),[40,60),[60,80),[80,100]
(1)求直方图中的x的值;
(2)如果上学所需时间不少于1小时的学生可以申请乘校车,请计算400名新生中有多少名学生可以申请乘校车上学.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=alnx-bx2(x>0).
(1)若函数f(x)在x=1处于直线y=-$\frac{1}{2}$相切,求函数f(x)在[$\frac{1}{e}$,e]上的最大值;
(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,$\frac{3}{2}$],x∈[1,e2]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是函数 f(x)=Asin(ωx+φ) (A>0,ω>0,$|φ|<\frac{π}{2}$)在一个周期的图象.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设0<α<π,若方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两点M(0,-5),N(4,3),给出下列曲线方程:①x+2y+1=0;②(x+1)2+(y+1)2=2;③$\frac{x^2}{4}+{y^2}=1$;④$\frac{x^2}{4}-{y^2}=1$.则曲线上存在点P满足|PM|=|PN|的方程的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.-630°化为弧度为-$\frac{7π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>0,b>0,则$6\sqrt{ab}+\frac{3}{a}+\frac{3}{b}$的最小值是(  )
A.10B.$12\sqrt{2}$C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x-1}{x-3}$+x
(1)求使f(x)≥0的x的取值范围;
(2)当x<3时,f(x)是否有最大值?若有,求出最大值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{-1}^{1}$(1+x+$\sqrt{1-{x}^{2}}$)dx=(  )
A.2-$\frac{π}{2}$B.2-πC.2+$\frac{π}{2}$D.2+π

查看答案和解析>>

同步练习册答案