精英家教网 > 高中数学 > 题目详情

【题目】给出下列三种说法:

①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.

②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.

③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

其中所有正确说法的序号为________________

【答案】①③

【解析】

试题分析:若命题p:存在x∈R,使得tanx=1;命题q:对任意x∈Rx2-x+10,则命题“pq”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“pq”为假命题.

已知直线l1ax+3y-1=0l2x+by+1=0.l1⊥l2的充要条件为3,若两直线垂直时,两直线斜率存在时,斜率乘积为3,当a=0b=0时,此时两直线垂直,但不满足3,故本命题不对.

命题x2-3x+2=0,则x=1”的逆否命题为:x≠1x2-3x+2≠0”,由四种命题的书写规则知,此命题正确;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的焦距为2 ,其上下顶点分别为C1 , C2 , 点A(1,0),B(3,2),AC1⊥AC2
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2 (n=1,2,3……),

(1)求{an}的通项公式;(2)设bn ,求{bn}的前n项和Tn

(3)在(2)的条件下,对任意n∈N*,Tn都成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图5,在四棱锥P-ABCD中,PA平面ABCD,AB=4,BC=3,AD=5,DAB=ABC=90°,E是CD的中点.

)证明:CD平面PAE;

)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上. (Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2 =1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为 .直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为,P在椭圆上,椭圆的左顶点为A,左、右焦点分别为的面积是的面积的倍.

(1)求椭圆C的方程;(2)直线与椭圆C交于M,N,连接并延长交椭圆C于D,E,连接DE,指出之间的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbnbnnbn1.

(1)求数列,的通项公式;

(2)设数列满足,数列的前n项和为,若不等式

对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结束,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间超过30分钟的概率是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)证明:f(x)≥2
(2)若当m=2时,关于实数x的不等式f(x)≥t2 t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案