精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

已知圆C1的方程为,定直线l的方程为.动圆C与圆C1外切,且与直线l相切.

(Ⅰ)求动圆圆心C的轨迹M的方程;

(II)斜率为k的直线l与轨迹M相切于第一象限的点P,过点P作直线l的垂线恰好经过点A(0,6),并交轨迹M于异于点P的点Q,记为轨迹M与直线PQ围成的封闭图形的面积,求的值.

 

 

【答案】

解(Ⅰ)设动圆圆心C的坐标为,动圆半径为R,则

          ,且    ————2分

    可得

由于圆C1在直线l的上方,所以动圆C的圆心C应该在直线l的上方,所以有,从而得,整理得,即为动圆圆心C的轨迹M的方程.                                            ————5分

(II)如图示,设点P的坐标为,则切线的斜率为,可得直线PQ的斜率为,所以直线PQ的方程为.由于该直线经过点A(0,6),所以有,得.因为点P在第一象限,所以,点P坐标为(4,2),直线PQ的方程为.                   ——————9分

把直线PQ的方程与轨迹M的方程联立得,解得或4,可得点Q的坐标为.所以

       

          .  ——————13分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案