精英家教网 > 高中数学 > 题目详情

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(1)答案见解析;(2)答案见解析;(3)(i);(Ⅱ)答案见解析.

【解析】分析:第一问首先利用众数和中位数定义,得到直方图中最高的那条对应的组中值就是众数,利用中位数的两边对应的条的面积是相等的,求得中位数;结合题中的条件,填完列联表,之后应用公式求得的观测值,与表中的值相比较,得到是否有把握认为其有没有关系第三问利用概率公式求得结果,分析变量的取值以及对应的概率列出分布列,应用离散型随机变量的分布列的期望公式求得结果.

详解:(1)分厂的质量指标值的众数的估计值为

分厂的质量指标值的中位数的估计值为,则

,解得

(2)列联表:

优质品

非优质品

合计

5

95

100

20

80

100

合计

25

175

200

由列联表可知的观测值为:

所以有的把握认为两个分厂的产品质量有差异.

(3)(i)依题意,厂的100个样本产品利用分层抽样的方法抽出10件产品中,优质品有2件,非优质品有8件,

设“从这10件产品中随机抽取2件,已知抽到一件产品是优质品”为事件,“从这10件产品中随机抽取2件,抽取的两件产品都是优质品”为事件,则

所以已知抽到一件产品是优质品的条件下,抽取的两件产品都是优质品的概率是

(ii)用频率估计概率,从分厂所有产品中任取一件产品是优质品的概率为0.20,所以随机变量服从二项分布,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

180

180

160

80

约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.

(1)抽出的青年观众与中年观众分别为多少人?

(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?

(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线方程为

(1) 求的值;

(2) 证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,求证:

2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)是否存在,使得对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有10000人,其中男生7500人,女生2500人,为调查该校学生每则平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).调查部分结果如下列联表:

男生

女生

总计

每周平均体育运动时间不超过4小时

35

每周平均体育运动时间超过4小时

30

总计

200

(1)完成上述每周平均体育运动时间与性别的列联表,并判断是否有把握认为“该校学生的每周平均体育运动时间与性别有关”;

(2)已知在被调查的男生中,有5名数学系的学生,其中有2名学生每周平均体育运动时间超过4小时,现从这5名学生中随机抽取2人,求恰有1人“每周平均体育运动时间超过4小时”的概率.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点依逆时针次序排列,点的极坐标为.

(1)求点的直角坐标;

(2)设上任意一点,求点到直线距离的取值范围.

查看答案和解析>>

同步练习册答案