精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:

①异面直线所成的角是定值;

②三棱锥的体积是定值;

③直线与平面所成的角是定值.

其中真命题的个数是( )

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

A点为坐标原点,AB,AD,所在直线为x轴,y轴,z轴建立空间直角坐标系,

可得=(1,1,1),=(t-1,1,-t),可得=0,可得①正确;

由三棱锥的底面面积为定值,且,可得②正确;

可得=(t,1,-t),平面的一个法向量为=(1,1,1),可得不为定值可得③错误,可得答案.

:A点为坐标原点,AB,AD,所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体棱长为1,可得B(1,0,0),C(1,1,O),D(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1),设F(t,1,1-t),(0≤t≤1),

可得=(1,1,1),=(t-1,1,-t),可得=0,故异面直线所的角是定值,故①正确;

三棱锥的底面面积为定值,且,点F是线段上的一个动点,可得F点到底面的距离为定值,故三棱锥的体积是定值,故②正确;

可得=(t,1,-t),=(0,1,-1),=(-1,1,0),可得平面的一个法向量为=(1,1,1),可得不为定值,故③错误;

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)求曲线C的极坐标方程;

(2)设直线l的极坐标方程为,若直线l与曲线C交于M,N两点,且,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

1)画出散点图;

2)求y关于x的线性回归方程.

3)如果广告费支出为一千万元,预测销售额大约为多少百万元?

参考公式用最小二乘法求线性回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.

甲每天生产的次品数/件

0

1

2

3

4

对应的天数/天

40

20

20

10

10

乙每天生产的次品数/件

0

1

2

3

对应的天数/天

30

25

25

20

(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;

(2)按这100天统计的数据,分别求甲、乙两名工人的平均日利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内的动点P到直线的距离与到点的距离比为

1)求动点P所在曲线E的方程;

2)设点Q为曲线E轴正半轴的交点,过坐标原点O作直线,与曲线E相交于异于点的不同两点,点C满足,直线分别与以C为圆心,为半径的圆相交于点A和点B,求△QAC与△QBC的面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在原点处的切线相同。

(1)求的值;

(2)求的单调区间和极值;

(3)若时,,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人参加竞选,结果是甲得票,乙得. 试求:唱票中甲累计的票数始终超过乙累计的票数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______

查看答案和解析>>

同步练习册答案