分析 (1)把直线方程与抛物线方程联立消去y,根据韦达定理表示出x1+x2和x1x2,利用弦长公式可求;
(2)由于OA⊥OB,从而有x1x2+y1y2=0,利用韦达定理可得方程,从而求出m的值.
解答 解:(1)设A(x1,y1)、B(x2,y2)
m=-2,直线L:y=x-2与抛物线y2=8x联立可得x2-12x+4=0,
∴x1+x2=12,x1x2=4,
∴|AB|=$\sqrt{2}•\sqrt{144-16}$=16------------------------------------(6分)
(2)∵OA⊥OB,∴x1x2+y1y2=0------------------------------------(7分)
x1x2+(x1+m)(x2+m)=0,2x1x2+m(x1+x2)+m2=0-----------------------------------------(9分)
2m2+m(8-2m)+m2=0,m2+8m=0,m=0或m=-8,---------------------------------(11分)
经检验m=-8------------------------------------------------------------(12分)
点评 本题主要考查直线与抛物线的位置关系,考查韦达定理得运用,考查等价转化问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-16]∪[2,+∞) | B. | (-16,2) | C. | [2,+∞) | D. | (-∞,-16] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1:1:$\sqrt{3}$ | B. | 2:2:$\sqrt{3}$ | C. | 1:1:2 | D. | 1:1:4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4a}$ | B. | $\frac{1}{2a}$ | C. | 2a | D. | 4a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com