分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
解答 解:根据y=Acos(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象,可得A=1,$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$=$\frac{π}{4}$,
∴ω=2.
再根据五点法作图可得 2×$\frac{π}{12}$+φ=2kπ,k∈Z,即 φ=2kπ-$\frac{π}{6}$,故φ=-$\frac{π}{6}$,
∴函数的解析式为 $y=cos(2x-\frac{π}{6})$,
故答案为:y=cos(2x-$\frac{π}{6}$).
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{2}$,+∞) | B. | (-∞,-1] | C. | (-∞,-2] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,1) | B. | (-3,-2) | C. | $({\frac{3}{4},-\frac{1}{2}})$ | D. | (1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com