精英家教网 > 高中数学 > 题目详情

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

【答案】(1) 之间存在线性相关关系;(2)0.38 ,.

【解析】试题分析:

(1)由题意求得,说明之间存在线性相关关系;

(2)结合所给数据可求得回归方程为,.据此预测当时,对应的值为.

试题解析:

(1)由题意,计算

.

,说明之间存在线性相关关系;

(2).

.

的线性回归方程为.

代入回归方程得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线的极坐标方程为,圆C的参数方程为

(1)求直线被圆C所截得的弦长;

(2)已知点,过点的直线与圆所相交于不同的两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查该校学生每周使用手机上网的时间,随机收集了若干位学生每周使用手机上网的时间的样本数据(单位:小时),将样本数据分组为,绘制了如下图所示的频率分布直方图,已知内的学生有5人.

(1)求样本容量,并估计该校学生每周平均使用手机上网的时间;

(2)将使用手机上网的时间在内定义为“长时间看手机”;使用手机上网的时间在内定义为“不长时间看手机”.已知在样本中有位学生不近视,其中“不长时间看手机”的有位学生.请将下面的列联表补充完整,并判断能否在犯错误的概率不超过的前提下认为该校学生长时间看手机与近视有关.

近视

不近视

合计

长时间看手机

不长时间看手机

15

合计

25

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在处的切线方程为,求的值;

(2)若,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对于任意的都有,当时,则

(1)判断的奇偶性;

(2)求上的最大值;

(3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣

(1)若a>0,试判断f(x)在定义域内的单调性;

(2)若f(x)在[1,e]上的最小值为,求实数a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的任意一点到两定点距离之和为,直线交曲线两点,为坐标原点.

1)求曲线的方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),e= ,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 ,且 (其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

同步练习册答案