精英家教网 > 高中数学 > 题目详情
连接椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个短轴的顶点和一个焦点组成一个直角三角形,椭圆相邻两个顶点的距离为3,求a,b的值.
∵椭圆方程为
x2
a2
+
y2
b2
=1

由题意知
b=c
a 2+b 2=9
b 2=a 2-c 2

解得a=
3
,b=
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线x2=4
3
y
的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=
3
2

(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,以椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线.
(1)求证c2=ab,并求直线BF与y轴的交点M的坐标;
(2)设直线BF交椭圆于P、Q两点,求证
OP
OQ
=
1
2
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-2y+2m=0(m∈R)和椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),椭圆C的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为2
2

(I)求椭圆C的方程;
(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:mx-2y+2m=0(m∈R)和椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),椭圆C的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为2
2

(I)求椭圆C的方程;
(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.

查看答案和解析>>

同步练习册答案