精英家教网 > 高中数学 > 题目详情

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为等;分数在内,记为等;分数在内,记为等;60分以下,记为等.同时认定为合格, 为不合格.已知甲,乙两所学校学生的原始成绩均分布在内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为的所有数据茎叶图如图2所示.

(Ⅰ)求图1中的值,并根据样本数据比较甲乙两校的合格率;

(Ⅱ)在选取的样本中,从甲,乙两校等级的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中甲校的学生人数,求随机变量的分布列和数学期望.

【答案】(1);甲、乙两校的合格率均为96%;2)详见解析.

【解析】试题分析:(1)频率分布直方图中,小矩形的和为频率和,和为1,这样可得到的值;合格率为大于等于60分的频率和;2级,甲校C级的频率为,人数为,而乙校C级的人数为4人,随机抽取3人中,甲校学生人数的可能取值为0123,所对应的概率,列分布列并求数学期望.

试题解析:(1)由题意,可知

................2

甲学校的合格率为........................3

而乙学校的合格率为.................4

甲、乙两校的合格率均为96%................5

2)样本中甲校等级的学生人数为....................6

而乙校等级的学生人数为4

随机抽取3人中,甲校学生人数的可能取值为0123...........7

的分布列为


0

1

2

3






...................................11

数学期望.................12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3万元、2万元,甲、乙产品都需要在两种设备上加工,在每台上加工1件甲所需工时分别是12加工1件乙所需工时分别为21 两种设备每月有效使用台时数分别为400500如何安排生产可使收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论函数上的单调性;

(II)设函数存在两个极值点,并记作,若,求正数的取值范围;

(III)求证:当=1时, (其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,三棱柱ABC-A1B1Cl中,MN分别为CC1A1B1的中点.CACB1,CA=CB1BA=BC=BB1.

(I)求证:直线MN//平面CAB1

(II)求证:直线BA1⊥平面CAB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x=1处的切线与直线平行。

(Ⅰ)求a的值并讨论函数y=f(x)上的单调性。

(Ⅱ)若函数 (为常数)有两个零点

(1)m的取值范围;

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为

(Ⅰ)求函数的单调区间;

(Ⅱ)若为整数,当时, 恒成立,求的最大值(其中的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G:,过点作圆的切线交椭圆G于A、B两点

(1)求椭圆G的焦点坐标和离心率;

(2)将表示为m的函数,并求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形 的底角 等于,直角梯形 所在的平面垂直于平面 ,且.

(1)证明:平面平面

(2)点在线段上,试确定点的位置,使平面与平面所成二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足,实数满足,则的最小值为__________

查看答案和解析>>

同步练习册答案