精英家教网 > 高中数学 > 题目详情
椭圆内有一点,过点的弦恰好以为中点,那么这条弦所在直线的斜率为     ,直线方程为      
 (只对一个得3分)

试题分析:本题涉及的是椭圆的弦中点问题,可用点差法.
设椭圆以为中点的弦的两端点分别为,则
因为点都在椭圆上,
所以,
得:

 ,
,解得: ,
直线的方程为: ,即:.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与圆相切.
(1)求椭圆的方程;
(2)设直线与椭圆的交点为,求弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知点,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且△的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率为,右焦点为(,0).
(I)求椭圆的方程;
(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆,过椭圆上一点作倾斜角互补的两条直线,分别交椭圆两点.则直线的斜率为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线交抛物线两点.若该抛物线上存在点,使得,则的取值范围为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线是平面内与定点和定直线的距离的积等于的点的轨迹.给出下列四个结论:
①曲线过坐标原点;
②曲线关于轴对称;
③曲线轴有个交点;
④若点在曲线上,则的最小值为.
其中,所有正确结论的序号是___________.

查看答案和解析>>

同步练习册答案