【题目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
【答案】
(1)解:A={x|﹣1<x<2}=(﹣1,2),B={x|log2x>1)=(1,+∞)
则A∩B=(1,2);A∪B=(﹣1,+∞)
(2)解:∵A=(﹣1,2),B=(0,+∞),A﹣B={x|x∈A且xB},
∴A﹣B=(﹣1,1];B﹣A=[2,+∞)
【解析】(1)求出B中的解集,找出两集合的交集,并集即可;(2)根据A﹣B的定义,求出A﹣B与B﹣A即可.
【考点精析】关于本题考查的集合的并集运算和集合的交集运算,需要了解并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式 <0的解集为( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常数m,n(m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥中,侧面, 是全等的直角三角形, 是公共的斜边且, ,另一侧面是正三角形.
(1)求证: ;
(2)若在线段上存在一点,使与平面成角,试求二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com