精英家教网 > 高中数学 > 题目详情
设函数f(x)=Asin(ωx+φ )(其中A>0,ω>0,-π<φ≤π)在x=
π
6
处取得最大值2,其图象与x轴的相邻两个交点的距离为
π
2

(1)求f(x)的解析式;
(2)求函数g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.
考点:三角函数的最值,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)根据图象确定A,ω 和φ的值即可求函数的解析式;
(2)利用三角函数的B倍角公式公式进行化简即可.
解答: 解:(1)由题设条件知f(x)的周期T=π,即
ω
=π,
解得ω=2.
因为f(x)在x=
π
6
处取得最大值2,所以A=2,
从而sin(2×
π
6
+φ)=1,
所以2×
π
6
+φ=
π
2
+2kπ,k∈Z,
又由-π<φ≤π,得φ=
π
6

故f(x)的解析式为f(x)=2sin(2x+
π
6
).
(2)g(x)=
6cos4x-sin2x-1
2sin(2x+
π
2
)

=
6cos4x+cos2x-2
2cos2x

=
(2cos2x-1)(3cos2x+2)
2(2cos2x-1)

=
3
2
cos2x+1(cos2x≠
1
2
).
因cos2x∈[0,1],且cos2
1
2

故g(x)的值域为[1,
7
4
)∪(
7
4
5
2
].
点评:本题主要考查三角函数解析式的求解以及诱导公式的应用,根据图象确定A,ω 和φ的值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}是递增数列,若a5-a1=60,a4-a2=24则公比q为(  )
A、
1
2
B、2
C、
1
2
或-2
1
2
D、2或
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在坐标轴上,与两点A(1,5),B(2,4)等距离的点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2
2-x
x-1
的定义域为集合A,关于x的不等式22ax<(
1
2
a+2x(a∈R)的解集为B,求使A∪B=B的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(2x+
π
3
B、f(x)=2sin(x+
π
3
C、f(x)=2sin(2x+
π
6
D、f(x)=2sin(x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.用反证法证明:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图的程序框图,输出的n的值为(  )
 
A、8B、9C、.10D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,△SBC,△SAC,△SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间图形的一个猜想是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,不具有奇偶性的函数是(  )
A、y=ex-e-x
B、y=lg
1+x
1-x
C、y=cos2x
D、y=sinx+cosx

查看答案和解析>>

同步练习册答案