精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2-4|x+1|+1.
(1)去绝对值,把函数f(x)写成分段函数的形式,并作出其图象;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的最小值.

分析 (1)化为分段函数,画出图象即可;
(2)由图象得到函数的单调区间;
(3)由图象求出最值.

解答 解:(1)$f(x)=\left\{\begin{array}{l}{x^2}-4x-3(x≥-1)\\{x^2}+4x+5(x<-1)\end{array}\right.$=$\left\{\begin{array}{l}{(x-2)^2}-7(x≥-1)\\{(x+2)^2}+1(x<-1)\end{array}\right.$,(2分)
其图象如右图所示.                      (6分)
(2)f(x)的单调减区间为(-∞,-2),(-1,2);
单调增区间为(-2,-1),(2,+∞)(10分)
(3)由图象知,当x=2时,f(x)取得最小值-7.(12分)

点评 本题考查了函数图象的画法和识别,以及函数的单调性,最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.有下列关系:(1)人的年龄与他(她)体内脂肪含量之间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)红橙的产量与气候之间的关系;(4)学生与他(她)的学号之间的关系.其中有相关关系的是(  )
A.(1)、(2)B.(1)、(3)C.(1)、(4)D.(3)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设0<α<π,0<β<π,$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(1-cosβ,sinβ),且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$-cosβ
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(Ⅱ)求α、β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,点F是棱PD的中点,点E在棱CD上移动.求证:PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x)=4x2+1,则f(x+1)=4x2+8x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2$|\begin{array}{l}{x}\end{array}|$
(1)在平面直角坐标系中画出函数f(x)的图象;(不用列表,直接画出草图.)
(2)根据图象,直接写出函数的单调区间;
(3)若关于x的方程f(x)-m=0有四个解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为π,则该函数的图象(  )
A.关于直线x=$\frac{π}{6}$对称B.关于直线x=$\frac{π}{4}$对称.
C.关于点($\frac{π}{4}$,0)对称D.关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为内角A,B,C的对边,三边a,b,c成等差数列,且$B=\frac{π}{4}$,则(cosA-cosC)2的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A为曲线C:4x2-y+1=0上的动点,定点M(-2,0),若$\overrightarrow{AT}=2\overrightarrow{TM}$,求动点T的轨迹方程.

查看答案和解析>>

同步练习册答案